caspian72.ru

Нарушения аминокислотного обмена с накоплением метаболитов в тканях. Врожденные нарушения обмена аминокислот

Нарушение трансаминирования и окислительного дезаминирования. Процессы трансаминирования и дезаминирования имеют универсальное значение для всех живых организмов: трансаминирование способствует синтезу аминокислот, дезаминирование - их разрушению.

Суть реакции трансаминирования состоит в обратном переносе аминогруппы с аминокислоты в α-кетокислоту без промежугочного образования свободного иона аммония. Реакция катализируется специфическими ферментами аминотрансферазами (трансаминазами), кофакторами которых являются фосфорилированные формы пиридоксина (пиридоксальфосфат и пиридоксаминфосфат).

Нарушения реакций трансаминирования могут возникать по нескольким причинам, прежде всего - в результате дефицита пиридоксина (беременность, угнетение сульфаниламидными препаратами кишечной микрофлоры, торможение синтеза пиридоксальфосфата при лечении фтивазидом). Снижение активности аминотрансфераз происходит также в случае угнетения синтеза белков (голодание, тяжелая патология печени). Если в некоторых органах возникает некроз (инфаркт миокарда или легких, панкреатит, гепатит и др.), то вследствие разрушения клеток тканевые аминотрансферазы поступают в кровь, и повышение их активности в крови при такой патологии является одним из диагностических критериев. В изменении скорости трансаминирования важную роль играют нарушение соотношения субстратов реакции, а также влияние гормонов, особенно глюкокортикоидов и гормонов щитовидной железы, стимулирующих этот процесс.

Угнетение процесса окислительного дезаминирования, в результате которого распадаются неиспользованные аминокислоты, обусловливает повышенную концентрацию их в крови - гипераминоацидемию . Последствиями этого являются усиленная экскреция аминокислот почками (аминоацидурия ) и изменение соотношения отдельных аминокислот в крови, что создает неблагоприятные условия для синтеза белковых молекул. Дезаминирование нарушается при дефиците компонентов, которые прямо или косвенно принимают участие в этой реакции (пиридоксин, рибофлавин, никотиновая кислота), а также при гипоксии, голодании (белковая недостаточность).

Нарушение декарбоксилирования. Этот процесс является важным, хотя и не универсальным направлением белкового обмена, и происходит с образованием углекислого газа и биогенных аминов. Декарбоксилированию подвергаются лишь некоторые аминокислоты: гистидин преобразуется в гистамин, тирозин - в тирамин, γ-глугаминовая кислота - в γ-аминомасляную кислоту (ГАМК), 5-гидрокситриптофан - в серотонин, производные тирозина (3,4-диоксифенилаланин) и цистина (L-цистеиновая кислота - соответственно в 3,4-диоксифенилэтиламин (дофамин) и таурин.

Биогенные амины, как известно, имеют специфическую биологическую активность, и увеличение их количества может вызвать определенные патологические изменения в организме. Большое количество биогенных аминов может быть результатом не только усиленного декарбоксилирования соответствующих аминокислот, но и угнетения окисления аминов и нарушения связывания их белками. Например, при гипоксии, ишемии и деструкции тканей (травма, облучение и т. п.) замедляются окислительные процессы, тем самым способствуя усилению декарбоксилирования. Избыток биогенных аминов (особенно гистамина и серотонина) в тканях может обусловить значительное нарушение местного кровообращения, повышение проницаемости сосудистой стенки и повреждение нервного аппарата.

Наследственные нарушения обмена некоторых аминокислот

Метаболизм аминокислот детерминируется определенным количеством и активностью соответствующих ферментов. Наследственные нарушения синтеза ферментов приводят к тому, что необходимая аминокислота не включается в метаболизм, а накапливается в биологических средах организма: крови, моче, кале, поту, спинномозговой жидкости. Клиническая картина в таких случаях обусловлена, во-первых, наличием достаточно большого количества вещества, которое должно было метаболизоваться с помощью заблокированного фермента; во-вторых - дефицитом вещества, которое должно было образоваться.

Генетически обусловленных нарушений обмена аминокислот известно довольно много, все они наследуются по аутосомно-рецессивному типу. Некоторые из них приведены в табл. 2.

Нарушение обмена фенилаланина. В норме фенилаланин преобразуется в тирозин. Если в печени нарушается синтез необходимого для этого фермента фенила-ланингидроксилазы (схема 4), то окисление фенилаланина происходит посредством образования фенилпировиноградной и фенилмолочной кислот - развивается фенилкетонурия. Однако этот путь имеет малую “пропускную” способность, поэтому большое количество фенилаланина накапливается в крови, тканях и спинномозговой жидкости, что в первые же месяцы жизни новорожденного проявляется тяжелым поражением ЦНС и неизлечимым слабоумием. Вследствие недостаточного синтеза тирозина угнетается образование меланина, который обусловливает осветление кожи и волос. Кроме того, в результате повышенного образования фенилпировиноградной кислоты тормозится активность фермента дофамингидроксилазы, необходимого для синтеза катехоламинов (адреналина, норадреналина). Тяжесть наследственной патологии определяется комплексом всех этих нарушений. Больные умирают в детстве, если не проводится специальное лечение, заключающееся в постоянном, но осторожном (контроль аминокислотного состава крови) ограничении поступления фенилаланина с пищей. Раннюю диагностику заболевания нужно проводить сразу после рождения ребенка. Для этого применяют различные биохимические тест-системы.

Нарушение обмена тирозина. Обмен тирозина происходит несколькими путями. В случае недостаточного преобразования тирозина в гомогентизиновую кислоту (см. схему 4), что может быть обусловлено дефектом различных ферментов, тирозин накапливается в крови и выводится с мочой. Это нарушение называется тирозинозом и сопровождается печеночной и почечной недостаточностью и ранней смертью ребенка или лишь задержкой психомоторного развития. Если нарушение обмена тирозина происходит в момент окисления гомогентизиновой кислоты (см. схему 4), развивается алкаптонурия. Фермент, окисляющий гомогентизиновую кислоту (гомогентизиноксидаза), образуется в печени. В норме он настолько быстро разрывает ее гидрохиноновое кольцо, что кислота “не успевает” попасть в кровь, а если и попала, то быстро выделяется почками. В случае наследственного дефекта этого фермента гомогентизиновая кислота в большом количестве накапливается в крови и моче. Моча больных алкаптонурией на воздухе или после добавления щелочи становится черной. Это объясняется окислением гомогентизиновой кислоты кислородом воздуха и образованием в ней алкаптона (от лат. alcapton - захватывающий щелочь). Гомогентизиновая кислота с током крови поступает в ткани - хрящевую, сухожилия, связки, внутренний слой стенки аорты, вследствие чего образуются темные пятна в области ушей, носа, щек, на склерах. Алкаптон делает хрящи и сухожилия хрупкими, что иногда приводит к тяжелым изменениям в суставах.

Также тирозин - это исходный продукт для образования пигмента меланина, содержащегося в коже и волосах. Если преобразование тирозина в меланин замедленно вследствие наследственного дефицита тирозиназы (см. схему 4), возникает альбинизм , который сопровождается повышением чувствительности кожи к солнечному свету и нарушением зрения.

И наконец, тирозин является предшественником тироксина. В случае недостаточного синтеза фермента, который катализирует взаимодействие тирозина со свободным йодом, нарушается образование гормонов щитовидной железы.

Нарушение обмена триптофана. Основной путь метаболизма триптофана, как и никотиновой кислоты, обеспечивает синтез никотинамидадениндинуклеотида (НАД) и НАДФ, которые играют важную роль в жизнедеятельности организма, будучи коферментами многих реакций обмена, а значительный дефицит этих веществ служит причиной развития пеллагры . Нарушение обмена триптофана также может сопровождаться изменением количества образующегося из него серотонина.

В организме все должно работать слаженно и четко. Однако бывает так, что некоторые органы дают сбой. В данной статье хочется рассказать о том, какие существуют причины и признаки нарушения обмена веществ.

Что такое обмен веществ

В самом начале нужно разобраться с понятиями, которые будут использоваться в статье. Итак, что же такое обмен веществ? В первую очередь нужно уточнить, что иное название данного процесса - это метаболизм. По своей сути это некий набор различного рода химических реакций, главная цель которых - поддерживать жизнедеятельность организма. Иные цели и задачи обмена веществ:

  1. Данные процессы ориентированы на то, чтобы преобразовывать продукты питания, поступившие в организм, в ценные калории.
  2. Следующая цель плавно вытекает из предыдущей. Обмен веществ также «следит» за расходом преобразованных калорий.
  3. Метаболизм синтезирует необходимые организму гормоны и ферменты.
  4. Также данные процессы отвечают за выведение продуктов распада.

Обмен веществ - это процессы, которые нужно рассматривать не только на примере деятельности отдельных органов или систем, но и на клеточном уровне.

Главная причина

Если у человека обнаружено нарушение обмена веществ, причины этого могут быть самыми разными. Так, в первую очередь доктора проследят наследственность пациента. Ведь именно это чаще всего и ведет к наличию у больного данных проблем. Однако стоит сказать о том, что причины метаболизма до конца еще не изучены и исследования в данной области медицинской науки все еще активно ведутся.

Иные причины

Если говорить о такой проблеме, как нарушение обмена веществ, причины этого могут быть также следующие:

  1. Дисфункции различных органов (гипофиза, половых желез, надпочечников, щитовидной железы).
  2. Неправильный образ жизни (малоподвижность, употребление алкоголя, неправильный режим питания - голодание или чрезмерное потребление пищи).
  3. Нарушение обмена веществ могут спровоцировать определенные заболевания, а также стрессовые ситуации, гиподинамия, нарушения сна.

О нарушениях

Какие существуют признаки нарушения обмена веществ? Стоит сказать о том, что с подобными проблемами нужно обращаться к врачу-эндокринологу. Например, можно отправиться в Институт эндокринологии, где можно получить квалифицированную консультацию и помощь. Только специалисты смогут определить, какого именно характера происходят нарушения у пациента. Это могут быть углеводные, белковые, жировые, минеральные и др. нарушения. О чем же будет идти речь, если говорится именно о нарушении обмена веществ? Нарушается гармоничное взаимодействие важнейших веществ, которые участвуют в метаболизме. Какие в таком случае могут возникать проблемы?

  1. Переизбыток или недостаток веществ.
  2. Различные нарушения реакции пищеварения.
  3. Скопление промежуточных продуктов обмена.
  4. Неравное образование конечных продуктов обмена веществ.

Нарушение белкового обмена

Всем известно, что белок - это самый главный стройматериал человеческого организма. Вызывать проблемы с нарушением белкового обмена могут различные заболевания и патологии. Что же в таком случае будет ощущать человек? Ситуация автоматически подразделяется на две большие категории.

Избыток белка

Какой самый главный симптом нарушения обмена веществ, если есть проблемы с избыточным количеством белка? Человек обязательно будет ощущать снижение аппетита. Иные симптомы:

  1. Различные дисфункции кишечника. Это могут быть как поносы, так и запоры.
  2. Могут развиться патологии почек, в том числе и почечная недостаточность.
  3. При избытке белка нервная система человека находится в постоянном напряжении. Возможны нервные срывы.
  4. В тканях больного могут откладываться соли.
  5. Также возможно существенное увеличение белка в плазме крови.

Заболевания, которые вызывает избыток белка: артрит, остеопороз, подагра и ожирение.

Дефицит белка

Что же будет ощущать человек, у которого не избыток, а именно дефицит такого важного микроэлемента, как белок?

  1. Слабость, сонливость.
  2. Мышечную слабость, гипотонус.
  3. Ломкость ногтей, волос, ухудшение состояния кожи.
  4. Утрату веса (возможна потеря веса до состояния дистрофии).
  5. Также при дефиците белка будет снижена
  6. Частые инфекционные болезни, а также иммунодефицит.

Белковое нарушение обмена веществ у детей имеет также определенные симптомы. При дефиците белка у деток может быть:

  1. Отставание в физическом развитии.
  2. Отставание в умственном развитии (снижение интеллектуальных способностей).

Заболевания, которые возникают при дефиците белка: квашиоркор (основные симптомы: отечность, слабость, потеря веса) и алиментарная дистрофия (также недостаток веса и отечность, но еще и различного рода иммунодефицитные состояния).

Нарушения углеводного обмена

За что отвечают углеводы в организме? Главная их задача - питание клеток мозга и осуществление энергетической функции. Именно эти элементы компенсируют потерю сил и энергии при стрессовых ситуациях или эмоциональной нагрузке. Стоит также сказать о том, что проблемы именно с углеводным нарушением веществ сопровождают больного чаще всего пожизненно.

Избыток углеводов

Главный симптом нарушения обмена веществ при проблемах с углеводами - это колебания массы тела. При избытке углеводов она может существенно увеличиваться, при дефиците - уменьшаться. Иные показатели:

  1. Дрожь в теле, которая возникает непроизвольно.
  2. Гиперактивность.
  3. Гипертония (чаще всего возникает на фоне существенного повышения массы тела).
  4. Увеличение в крови уровня глюкозы.
  5. Сердечно-сосудистые патологии (чаще всего также возникают на фоне ожирения).

Заболевания, которые могут возникать вследствие избытка углеводов: ожирение и сахарный диабет.

Дефицит углеводов

Основные симптомы, которые могут возникать вследствие дефицита углеводов:

  1. Депрессия.
  2. Сонливость, слабость.
  3. Потеря массы тела.
  4. Тремор ног и рук.
  5. Уменьшение уровня глюкозы в крови.

Заболевания: гипогликемия и болезнь Гирке.

Нарушение обмена жиров

Жиры являются не менее важным элементом человеческого организма. Именно благодаря жирам организм поддерживает внутренний гомеостаз. Жировая ткань есть в гормонах и нервных волокнах.

Важный симптом нарушения обмена веществ при проблеме с жирами - это опять-таки изменения массы тела. Если говорить об избытке жиров в организме, человеку нередко диагностируют ожирение. Иные симптомы:

  1. Атеросклероз.
  2. Образование камней в желчном пузыре и печени.
  3. Проблемы с кровью: увеличение свертываемости, избыток холестерина в крови.

Если говорить о дефиците жиров в организме, можно наблюдать следующие симптомы:

  1. Гиповитаминоз.
  2. Выпадение волос.
  3. Кожные воспаления.
  4. Гормональный дисбаланс.
  5. Патологии почек.

Нарушение водного обмена

Какой еще есть симптом нарушения обмена веществ? Так, если нарушен именно водный обмен, у человека могут быть отеки, водянка, нередко возникает состояние шока (если речь идет об избытке в организме воды). Потеря электролитов, нарушения работы ЦНС, заболевания почек - если говорить о дефиците воды в организме.

Нарушение минерального обмена

Минералы - это биокатализаторы множественных физиологических реакций, а также стабилизаторы кислотного состояния организма. Чаще всего к минеральному нарушению обмена веществ приводят различного рода стрессовые ситуации, неблагоприятная окружающая среда, слишком быстрый темп жизни (особенно это касается жителей мегаполиса), вредные привычки, нервозность и, конечно же, неправильное питание. Если рассматривать эндокринные нарушения, симптомы проблем с минеральным обменом могут быть следующими:

  1. Внешние показатели: ломкость ногтей, угревые высыпания, выпадение волос.
  2. Бессонница.
  3. Снижение иммунитета.
  4. Ухудшение зрения.
  5. Расстройства стула.
  6. Снижение либидо.

Дети

Отдельно также надо рассмотреть нарушение обмена веществ у детей. Стоит сказать о том, что подобные проблемы могут возникать у малышей даже в самом раннем возрасте. В таком случае принято говорить о болезни, которая носит название «экссудативный диатез». Основная симптоматика:

  1. Красные пятна, которые появляются на теле малыша. Могут зудеть, мокнуть. Похожи на Могут также появляться гнойнички.
  2. Воспаления глаз ребенка, насморк (возникают проблемы со слизистыми оболочками).

Чтобы справиться с проблемами обмена веществ у деток любого возраста, достаточно просто наладить правильное питание. Если же речь идет о грудничках, исправить свой режим питания должна кормящая мама.

О видах метаболизма

Каждый человек должен знать, какой именно у него вид обмена веществ. Так, их существует три:

  1. Нормальный.
  2. Ускоренный (или же быстрый обмен веществ).
  3. Экономичный обмен веществ.

При нормальном метаболизме люди должны следить за режимом питания, т. к. переизбыток пищи может приводить к различного рода проблемам. Если у человека быстрый обмен веществ, в таком случае ему можно кушать все и много. А все это позволительно потому, что в их организме жиры быстрее сгорают, нежели накапливаются. Те же, у кого экономный режим обмена веществ, как говорится, «от воды полнеют». Такие люди должны с пристальным вниманием следить за своим питанием, не позволяя себе ничего лишнего. Однако как можно узнать, какой именно вид метаболизма у человека? Существует два способа.

  1. Провести биохимическое исследование организма. Недостаток: дороговизна процедуры.
  2. Провести небольшой эксперимент.

Об эксперименте

Для того чтобы узнать, какой именно вид обмена веществ присутствует у человека, не обязательно посещать Институт эндокринологии. В таком случае можно воспользоваться проверенным способом. Для этого нужно утром (лучше в воскресенье) встать, сделать все гигиенические процедуры. Пройдя на кухню, надо разогреть и быстренько скушать 300 г каши. Далее надо подождать пару минут.

  1. При ускоренном метаболизме выступит испарина.
  2. Если станет тепло, обмен веществ нормальный.
  3. Если же человек совершенно ничего не почувствует и не ощутит, у него экономный вид метаболизма.

Профилактика

Профилактика нарушения обмена веществ - отличный способ избежать проблем с метаболизмом. Что же в таком случае будет актуально:

  1. Правильное сбалансированное питание. Нужно по максимуму отказаться от крахмалистой, жирной, сладкой пищи. Нельзя переедать или же голодать. Также нужно следить за тем, чтобы организм в полном количестве потреблял все витамины и микроэлементы.
  2. Организм должен правильно отдыхать (важен беспрерывный 7-мичасовой сон).
  3. Нужно стараться избегать стрессовых ситуаций и эмоциональных перегрузок.
  4. Нужно полностью избавиться от всех вредных привычек.
  5. Также желательно избегать неблагоприятных факторов внешней среды.

В данном случае также важной окажется профилактика эндокринных заболеваний. Особенное внимание нужно уделить профилактическим мерам диабета и гипогликемии (углеводный дисбаланс).

Лечение

Итак, мы выяснили, что такое нарушение обмена веществ (симптомы). Лечение данной проблемы - вот о чем также хочется рассказать. Справиться с нарушениями метаболизма можно при помощи различного рода медикаментозных препаратов.

  1. Стимуляторы, в составе которых есть кофеин и теин (чаще всего их принимают спортсмены).
  2. Гормональные препараты, а также медикаменты, которые лечат эндокринные нарушения.
  3. Препараты, в основе которых есть антидепрессанты.
  4. Различного рода экстракты. К примеру, экстракт гуараны, который нормализирует клеточный обмен и ускоряет

Народная медицина

Важно: если у человека есть определенные проблемы с обменом веществ, в таком случае лучше всего обратиться за помощью к квалифицированному специалисту. В противном случае можно здорово навредить своему здоровью. Однако в случае, если нет возможности обратиться к медикам, можно попробовать справиться с проблемами средствами народной медицины:

  1. Чтобы восстановить обмен веществ, можно приготовить настой из листочков грецкого ореха. Для приготовления лекарства надо взять две чайных ложки сухих листьев, залить одним стаканом кипятка и все настаивать примерно час. Отвар надо принимать 4 раза в сутки по полстакана перед приемом пищи.
  2. Можно пить чай из полевого хвоща (продается в аптеке). В лекарственных целях - трижды в сутки по четверти стакана. Он поможет не только настроить обмен веществ, но и очистит организм.
  3. А чтобы достаточно просто регулярно посещать сауну или баню. Однако предварительно нужно убедиться, нет ли иных противопоказаний к их посещению.

Общее представление о нарушении белкового обмена можно получить при изучении азотистого равновесия организма и окружающей среды.

Нарушения азотистого равновесия

Нарушение азотистого равновесия проявляется в виде положительного или отрицательного азотистого баланса.

Положительный азотистый баланс - такое состояние, когда из организма выводится меньше азота, чем поступает с пищей. Наблюдается оно во время роста организма, при беременности, а также после голодания, при избыточной секреции анаболических гормонов (соматотропный гормон, андрогены и др.) и при назначении их с лечебной целью.



Анаболическое действие гормонов заключается в усилении процессов синтеза белка по сравнению с его распадом. Таким действием обладают следующие" гормоны.

Соматотропный гормон усиливает окисление жира и мобилизацию нейтрального жира и ведет, таким образом, к достаточному освобождению энергии, необходимой для процессов синтеза белка.

Половые гормоны усиливают процессы синтеза белка.

Инсулин облегчает переход аминокислот через клеточные мембраны внутрь клеток и, таким образом, способствует синтезу белка и ослабляет глюконеогенез. Недостаток инсулина ведет к снижению синтеза белка и к увеличению глюконеогенеза.

Отрицательный азотистый баланс - состояние, когда из организма выводится больше азота, чем поступает с пищей. Отрицательный азотистый баланс развивается при голодании, протеинурии, инфекционных заболеваниях, травмах, термических ожогах, хирургических операциях, при избыточной секреции или назначении катаболических гормонов (кортизол, тироксин и др.).

Катаболическое действие гормонов заключается в усилении процессов распада белков по сравнению с процессами синтеза. Таким действием обладают следующие гормоны.

Тироксин увеличивает количество активных сульфгидрильных групп в структуре некоторых ферментов - активируются тканевые катепсины и усиливается их протеолитическое действие. Тироксин повышает активность аминооксидаз - увеличивается дезаминирование некоторых аминокислот. При гипертиреозе у больных развивается отрицательный азотистый баланс и креатинурия.

При дефиците гормонов щитовидной железы, например при гипотиреозе, недостаточность катаболического действия гормона проявляется в виде положительного азотистого баланса и накопления креатина.

Глюкокортикоидные гормоны (кортизол и др.) усиливают распад белков. Расход белков увеличивается на нужды глюконеогенеза; при этом также замедляется синтез белка.

Обмен белков может быть нарушен на разных этапах превращений принятых с пищей белковых веществ. Можно выделить следующие нарушения:

  • 1) при поступлении, переваривании и всасывании белков в желудочно-кишечном тракте;
  • 2) при синтезе и распаде белков в клетках и тканях организма;
  • 3) при межуточном обмене аминокислот;
  • 4) на конечных этапах белкового обмена;
  • 5) в белковом составе плазмы крови.

Нарушения поступления, переваривания и всасывания белков в желудочно-кишечном тракте

Расстройства секреции отдельных протеолитических ферментов желудочного тракта, как правило, не вызывают серьезных нарушений белкового обмена. Так, полное прекращение секреции пепсина с желудочным соком не отражается на степени расщепления белков в кишечнике, но существенно влияет на скорость его расщепления и появления отдельных свободных аминокислот.

Отщепление отдельных аминокислот в желудочно-кишечном тракте происходит неравномерно. Так, тирозин и триптофан в норме отщепляются от белков уже в желудке, а другие аминокислоты - лишь под действием протеолитических ферментов кишечного сока. Состав аминокислот в содержимом кишечника в начале и конце кишечного переваривания различен.

Аминокислоты могут поступать в систему воротной вены в различном соотношении. Относительный дефицит даже одной незаменимой аминокислоты затрудняет весь процесс биосинтеза белков и создает относительный избыток других аминокислот с накоплением в организме промежуточных продуктов обмена этих аминокислот.

Подобные нарушения обмена, связанные с запаздыванием отщепления тирозина и триптофана, возникают при ахилии и субтотальной резекции желудка.

Нарушение всасывания аминокислот может возникнуть при патологических изменениях стенки тонкого кишечника, например при воспалении, отеке.

Нарушения синтеза и распада белка

Синтез белка происходит внутри клеток. Характер синтеза зависит от генетического набора на хромосомах в ядре клетки. Под воздействием генов, специфических для каждого вида белка в каждом организме, активируются ферменты, и в ядре клетки происходит синтез информационной рибонуклеиновой кислоты (и-РНК). и-РНК является зеркальной копией дезоксирибонуклеиновой кислоты (ДНК), находящейся в ядре клетки.

Синтез белка происходит в цитоплазме клетки на рибосомах. Под воздействием и-РНК на рибосомах синтезируется матричная РНК (м-РНК), которая является копией и-РНК и содержит закодированную информацию о виде и последовательности расположения аминокислот в молекуле синтезируемого белка.

Для включения аминокислот в молекулу белка в соответствии с матрицей (м-РНК) необходима их активация. Функция активации аминокислот выполняет фракция РНК, называемая растворимой, или транспортной (т-РНК). Активация аминокислот сопровождается их фосфорилированием. Присоединение аминокислот посредством т-РНК к определенным группировкам нуклеотидов м-РНК осуществляется при дефосфорилировании их за счет энергии гуанизинтрифосфата. Синтезированный белок выполняет специфическую функцию в клетке или транспортируется из клетки и выполняет свою функцию как белок крови, антитело, гормон, фермент.

Регуляция синтеза белка в клетке генетически обусловлена наличием не только структурных генов, ведающих последовательностью расположения оснований нуклеотидов при синтезе и-РНК, но и дополнительных регулирующих генов. В регуляции синтеза белка в клетке принимают участие еще по крайней мере два гена - ген-оператор и регулирующий ген.
Регулирующий ген ведает синтезом репрессора, который является ферментом и тормозит в конечном итоге деятельность структурных генов и образование и-РНК.
Ген-оператор, или оперирующий ген, непосредственно подчиняется действию репрессора, вызывающего в одном случае репрессию, а в другом - дерепрессию: появление синтеза ряда ферментов, синтезирующих и-РНК. Оперирующий ген составляет единое целое со структурными генами, образуя так называемый оперон.
Репрессивное вещество может находиться в двух состояниях: активном и неактивном. В активном состоянии репрессор действует на оперирующий ген, прекращает его воздействия на структурные гены и в конечном итоге прекращает синтез и-РНК и синтез белка.
Активаторы репрессора носят название корепрессоров. Ими могут быть как определенная концентрация регулируемого белка, так и факторы, образовавшиеся в результате действия этого белка.

Регуляция синтеза белка осуществляется следующим образом. При недостатке белка в клетке прекращается действие репрессора на оперон. Увеличивается синтез и-РНК и м-РНК. и на рибосомах начинается синтез белковых молекул. Концентрация белка увеличивается. Если синтезированный белок недостаточно быстро метаболизируется, его количество продолжает нарастать. Определенная концентрация этого белка, или факторов, образовавшихся под его действием, может служить корепрессором синтеза, активируя репрессор. Прекращается влияние оперирующего гена на структурные гены и прекращается в конечном итоге синтез белка. Его концентрация снижается и т. д.

При нарушении регуляции синтеза белка могут возникать патологические состояния, связанные как с избыточным синтезом, так и с недостаточным синтезом белка.

Синтез белка может быть нарушен под действием различных внешних и внутренних болезнетворных факторов:

  • а) при неполноценности аминокислотного состава белков;
  • б) при патологических мутациях генов, связанных как с появлением патогенных структурных генов, так и с отсутствием нормальных регулирующих и структурных генов;
  • в) при блокировании гуморальными факторами ферментов, ведающих процессами репрессии и дерепрессии синтеза белка в клетках;
  • г) при нарушении соотношения анаболических и катаболических факторов, регулирующих синтез белка.

Отсутствие в клетках даже одной незаменимой аминокислоты прекращает синтез белка.

Биосинтез белка может нарушаться не только при отсутствии отдельных незаменимых аминокислот, но и при нарушении соотношения между количеством незаменимых аминокислот, поступающих в организм. Потребность в отдельных незаменимых аминокислотах связана с их участием в синтезе гормонов, медиаторов, биологически активных веществ.

Недостаточное поступление в организм незаменимых аминокислот вызывает не только общие Нарушения синтеза белка, но и избирательно нарушает синтез отдельных белков. Недостаток незаменимой аминокислоты может сопровождаться характерными для нее нарушениями.

Триптофан . При длительном исключении из пищевого рациона у крыс развивается васкуляризация роговицы и катаракта. У детей ограничение триптофана в пище сопровождается снижением концентрации плазменных белков.

Лизин . Отсутствие в пище сопровождается у людей появлением тошноты, головокружения, головной боли и повышенной чувствительности к шуму.

Аргинин . Отсутствие в пище может привести к угнетению сперматогенеза.

Лейцин . Относительный избыток его по сравнению с другими незаменимыми аминокислотами у крыс угнетает рост из-за соответствующего нарушения усвоения изолейцина.

Гистидин . Недостаток его сопровождается снижением концентрации гемоглобина.

Метионин . Исключение его из пищи сопровождается жировым перерождением печени, обусловленным недостатком лабильных метильных групп для синтеза лецитина.

Валин . Недостаток его ведет к задержке роста, похуданию, развитию кератозов.

Заменимые аминокислоты существенно влияют на потребность в незаменимых аминокислотах. Например, потребность в метионине определяется содержанием цистина в диете. Чем больше в пище цистина, тем меньше расходуется метионина для биологического синтеза цистина. Если в организме скорость синтеза заменимой аминокислоты становится недостаточной, появляется повышенная потребность в ней.

Некоторые заменимые аминокислоты становятся незаменимыми, если они не поступают с пищей, так как организм не справляется с быстрым их синтезом. Так, недостаток цистина ведет к торможению роста клеток даже при наличии всех остальных аминокислот в среде.

Нарушения регуляции синтеза белка - антител - может наблюдаться при некоторых аллергических заболеваниях. Так, в иммунокомпетентных клетках (клетки лимфоидного ряда), продуцирующих антитела, обычно репрессирована выработка аутоантител. В процессе эмбрионального развития при смене фаз (стадия нервной трубки, листков мезенхимы) происходит дерепрессия синтеза аутоантител. В тканях определяются аутоантитела, которые участвуют в рассасывании тканей прежних фаз развития эмбриона. Такая смена активности репрессоров происходит несколько раз. Во взрослом организме синтез аутоантител репрессирован. Так, например, репрессирован синтез аутоантител к антигенам собственных эритроцитов. Если, в зависимости от группы крови в эритроцитах находится агглютининоген А, то в плазме крови отсутствуют α-агглютинины, выработка которых надежно репрессирована. На этой основе возможна трансплантация крови и кроветворной ткани (костного мозга).

К некоторым тканям (хрусталик глаза, нервная ткань, тестикулы) выработка аутоантител не репрессирована, но эти ткани в силу своих анатомических и функциональных особенностей изолированы от иммунокомпетентных клеток и в норме выработки аутоантител не происходит. При нарушении анатомической изоляции (повреждение) начинается выработка аутоантител и возникают аутоаллергические заболевания.

Нарушения обмена аминокислот

Нарушения дезаминирования . Окислительное дезаминирование осуществляется в результате последовательных превращений аминокислот в реакциях переаминирования и дезаминирования:

Аминокислоты при участии специфических трансаминаз вначале переаминируются с α-кетоглютаровой кислотой. Образуется кетокислота и глютамат. Глютамат под действием дегидрогеназы подвергается окислительному дезаминированию с освобождением аммиака и образованием α-кетоглютарата. Реакции обратимы. Таким образом образуются новые аминокислоты. Включение а-кетоглютаровой кислоты в цикл Кребса обеспечивает включение аминокислот в энергетический обмен. Окислительное дезаминирование определяет и образование конечных продуктов белкового обмена.

С переаминированием связано образование аминосахаров, порфиринов, креатина и дезаминирование аминокислот. Нарушение переаминирования возникает при недостатке витамина В6, так как его форма - фосфопиридоксаль - является активной группой трансаминаз.

Соотношение субстратов переаминирования определяет направление реакции. При нарушении мочевинообразования происходит ускорение переаминирования.

Ослабление дезаминирования возникает при снижении активности ферментов - аминооксидаз и при нарушении окислительных процессов (гипоксия, гиповитаминозы С, РР, В 2).

При нарушении дезаминирования аминокислот увеличивается выделение аминокислот с мочой (аминоацидурия), уменьшается мочевинообразование.

Нарушения декарбоксилирования . Декарбоксилирование аминокислот сопровождается выделением СО 2 и образованием биогенных аминов:

В животном организме декарбоксилированию подвергаются лишь некоторые аминокислоты с образованием биогенных аминов: гистидин (гистамин), тирозин (тирамин), 5-гидрокситриптофан (серотонин), глютаминовая кислота (γ-аминомасляная кислота) и продукты дальнейших превращений тирозина и цистина: 3,4-диоксифенилаланин (ДОФА, окситирамин) и цистеиновая кислота (таурин) (рис. 47).

Биогенные амины проявляют свое действие уже при малых концентрациях. Накопление аминов в больших концентрациях представляет серьезную опасность для организма. В нормальных условиях амины быстро устраняются под действием аминоксидазы, которая окисляет их в альдегиды:

При этой реакции образуется свободный аммиак. Инактивация аминов достигается также путем их связывания с белками.

Накопление биогенных аминов в тканях и крови и проявление их токсического действия возникает; при усилении активности декарбоксилаз, торможении активности оксидаз и нарушении связывания их с белками.

При патологических процессах, сопровождающихся угнетением окислительного дезаминирования, превращение аминокислот в большей степени происходит путем декарбоксилирования с накоплением биогенных аминов.

Нарушения обмена отдельных аминокислот . Существует ряд наследственных заболеваний человека, связанных с врожденными дефектами обмена отдельных аминокислот. Эти нарушения обмена аминокислот связаны с генетически обусловленным нарушением синтеза белковых групп ферментов, осуществляющих превращения аминокислот (табл. 24).

Нарушения обмена фенилаланина (фенилкетонурия) . Причиной заболевания является недостаток фермента - фенилаланингидроксилазы в печени, вследствие чего блокировано превращение фенилаланина в тирозин (рис. 48). Концентрация фенилаланина в крови достигает 20-60 мг% (в норме около 1,5 мг%). Продукты его, метаболизма, в частности кетокислота - фенилпируват, оказывают токсическое воздействие на нервную систему. Нервные клетки коры головного мозга разрушаются и замещаются разрастанием микроглиальных элементов. Развивается фенилпировиноградная олигофрения. Фенилпируват появляется в моче и дает зеленую окраску с трихлорным железом. Эта реакция проводится у новорожденных и служит для ранней диагностики фенилкетонурии.

При развитии заболевания уже в 6-месячном возрасте у ребенка отмечаются признаки недостаточного умственного развития, просветление цвета кожи и волос, общее возбуждение, усиление рефлексов, повышение тонуса мышц и основного обмена, эпилепсия, микроцефалия и др.

Просветление цвета кожи и волос развивается из-за недостаточной выработки меланина, так как в результате накопления фенилаланина блокируется метаболизм тирозина.

Развивается недостаточность синтеза катехоламинов, снижается уровень других свободных аминокислот в плазме крови. Увеличивается выделение кетоновых тел с мочой.

Исключение фенилаланина из диеты ведет к снижению содержания фенилаланина и его производных в крови и препятствует развитию фенил-кетонурии.

Нарушение обмена гомогентизиновой кислоты (продукта метаболизма тирозина) - алкаптонурия - возникает при недостатке фермента - оксидазы гомогентизиновой кислоты (рис. 49).

При этом гомогентизиновая кислота не переходит в малеилацетоуксусную кислоту (не происходит разрыва гидрохинонового кольца). В нормальных условиях гомогентизиновая кислота в крови не определяется. При недостаточности фермента гомогентизиновая кислота появляется в крови и выводится из организма с мочой. Отмечается характерное потемнение мочи, особенно в щелочной среде.

Отложение производных гомогентизиновой кислоты в тканях вызывает пигментацию соединительной ткани - охроноз. Пигмент откладывается в суставных хрящах, в хрящах носа, ушных раковинах, в эндокарде, крупных кровеносных сосудах, почках, легких, в эпидермисе. Алкаптонурии часто сопутствует почечнокаменная болезнь.

Нарушение обмена тирозина - альбинизм . Причиной заболевания является недостаток фермента тирозиназы в меланоцитах - клетках, синтезирующих пигмент меланин (рис. 50).

При отсутствии меланина кожа приобретает молочно-белый цвете белесым оволосением (альбинизм), наблюдаются светобоязнь, нистагм, просвечивание радужной оболочки, снижение остроты зрения. Солнечное облучение вызывает воспалительные изменения кожи - эритему.

Альбинизм может сопровождаться глухотой, немотой, эпилепсией, полидактилией и олигофренией. Интеллект таких больных чаще нормальный.

Нарушения обмена гистидина . Мастоцитоз - наследственная болезнь, сопровождаемая усиленной пролиферацией тучных клеток. Причиной заболевания считают повышение активности гистидинде-карбоксилазы - фермента, катализирующего синтез гистамина. Гистамин накапливается в печени, селезенке и других органах. Болезнь характеризуется поражениями кожи, Нарушениями сердечной деятельности и функции желудочно-кишечного тракта. Отмечается повышенная экскреция с мочой гистамина.

Гипераминацидурии . Возникают при нарушении реабсорбции аминокислот в почечных канальцах (почечная гипераминоацидурия, например цистиноз, цистинурия) или при увеличении концентрации аминокислот в крови (внепочечная гипераминоацидурия, например фенилкетонурия, цистатионурия).

Цистиноз . Наблюдается при врожденном дефекте реабсорбции в канальцах почек цистина, цистеина и других нециклических аминокислот. Экскреция аминокислот с мочой может увеличиваться при этом в 10 раз. Экскреция цистина и цистеина возрастает в 20-30 раз. Цистин откладывается в почках, селезенке, коже, печени. Цистиноз сопровождается глюкозурией, гиперкалиурией, протеинурией и полиурией.

При цистинурии экскреция цистина может увеличиваться до 50 раз по сравнению с нормой, сопровождаясь угнетением реабсорбции лизина, аргинина и орнитина в почечных канальца^. Уровень цистина в крови не превышает нормы. Не обнаружено нарушений в межуточном обмене этих аминокислот. Повышенная экскреция аминокислот может привести к нарушениям синтеза белка и белковой недостаточности.

Нарушения конечных этапов белкового обмена

Нарушения мочевинообразования. Конечными продуктами распада аминокислот являются аммиак, мочевина, СО 2 и Н 2 О. Аммиак образуется во всех тканях в результате дезаминирования аминокислот. Аммиак токсичен, при его накоплении повреждается протоплазма клеток. Для связывания аммиака и его обезвреживания существуют два механизма: в печени образуется мочевина, а в других тканях аммиак присоединяется к глютаминовой кислоте (амидирование) - образуется глютамин. В дальнейшем глютамин отдает аммиак для синтеза новых аминокислот, превращения которых завершаются образованием мочевины, выделяемой с мочой. Из всего азота мочи на долю мочевины приходится 90% (аммиака около 6%).

Синтез мочевины происходит в печени в цитруллинаргининорнитиновым цикле (рис. 51). Существуют заболевания, связанные с наследственным дефектом ферментов мочевинообразования.

Аргининсукцинатурия . Заключается в гипераминоацидурии (аргининоянтарная кислота) и в олигофрении. Причина - дефект фермента аргининосукцинатлиазы.

Аммонийемия . В крови увеличена концентрация аммиака. Повышена экскреция глютамина с мочой. Причина заболевания - блокирование карбамилфосфатсинтетазы и орнитинкарбамоилтрансферазы, катализирующих связывание аммиака и образование орнитина в цикле мочевинообразования.

Цитруллинурия . Концентрация цитруллина в крови может увеличиваться сверх нормы в 50 раз. С мочой экскретируется до 15 г цитруллина в сутки. Причина - наследственный дефект аргининсукцинат-синтетазы.

Активность ферментов синтеза мочевины нарушается и при заболеваниях печени (гепатиты, застойный цирроз), гипопротеинемиях, угнетении окислительного фосфорилирования. В крови и тканях накапливается аммиак - развивается аммонийная интоксикация.

Наиболее чувствительны к избытку аммиака клетки нервной системы. Кроме непосредственного повреждающего действия аммиака на нервные клетки, аммиак связывается глютаматом, в результате чего он выключается из обмена. При ускорении переаминирования аминокислот с α-кето-глютаровой кислотой, она не включается в цикл Кребса, ограничивается окисление пировиноградной и уксусной кислот и они превращаются в кетоновые тела. Снижается потребление кислорода. Развивается коматозное состояние.

Нарушения обмена мочевой кислоты . Подагра. Мочевая кислота - конечный продукт обмена аминопуринов (аденин и гуанин) у человека. У рептилий и птиц мочевая кислота является конечным продуктом обмена всех азотистых соединений. В крови у человека обычно содержится 4 мг% мочевой кислоты. При избыточном потреблении продуктов, богатых пуриновыми нуклеотидами и аминокислотами, из которых в организме синтезируются пуриновые основания (печень, почки), в организме увеличивается количество мочевой кислоты. Концентрация ее возрастает также при нефритах, лейкемиях. Возникает гиперурекемия.

Иногда гиперурекемия сопровождается отложением солей мочевой кислоты в хрящах, сухожильных влагалищах, ночках, коже и мышцах, так как мочевая кислота плохо растворима. Вокруг отложений кристаллических уратов возникает воспаление - создается грануляционный вал, окружающий омертвевшие ткани, образуются подагрические узлы. Урекемия может сопровождаться выпадением солей мочевой кислоты в мочевых путях с образованием конкрементов.

Патогенез подагры не ясен. Предполагают, что заболевание носит наследственный характер и связано с нарушением факторов, поддерживающих мочевую кислоту в растворимом состоянии. Эти факторы связаны с обменом мукополисахаридов и мукопротеидов, которые образуют центр кристаллизации. При нарушении функции печени (интоксикация) увеличивается отложение уратов в тканях и выделение уратов с мочой.

Нарушения белкового состава крови

Гипопротеинемия - уменьшение общего количества белка в крови, возникающее главным образом за счет уменьшения альбуминов.

В механизме возникновения гипопротеинемии основными патогенетическими факторами являются приобретенные ими наследственно обусловленные нарушения синтеза белков крови, выход сывороточных белков из кровеносного русла без последующего возврата в сосуды и разжижение крови.

Нарушения синтеза белков крови зависят от ослабления синтетических процессов в организме (голодание, нарушение усвоения пищевых белков, авитаминозы, истощение организма вследствие длительной инфекционной интоксикации или злокачественных новообразований и пр.).

Синтез белков крови может снижаться и при нарушении функции органов и тканей, продуцирующих эти белки. При заболеваниях печени (гепатиты, цирроз) снижается содержание в плазме крови альбумина, фибриногена, протромбина. Встречаются наследственные дефекты синтеза тех или иных белковых фракций крови, например наследственные формы: афибриногенемия и агаммаглобулинемия. Выраженная недостаточность синтеза гамма-глобулина связана с полным отсутствием у таких больных плазматических клеток во всех тканях и значительным уменьшением количества лимфоцитов в лимфатических узлах.

Выход белков из кровеносного русла наблюдается при:

  • а) кровопотерях, ранениях, больших кровоизлияниях;
  • б) плазмо-потерях, в частности ожогах;
  • в) повышении проницаемости стенки капилляров, например при воспалении и венозном застое.

При обширных воспалительных процессах падает в крови содержание альбуминов вследствие их выхода из сосудов в интерстициальное пространство (рис. 52). Большое количество альбуминов обнаруживается также в асцитической жидкости при портальной гипертонии и сердечной недостаточности.

Гипоальбуминемия может возникать при нарушении процессов реабсорбции белка в почках, например при нефрозах.

При гипопротеинемии вследствие уменьшения содержания альбуминов падает онкотическое давление крови, что приводит к возникновению отеков.

При абсолютном понижении количества альбуминов в крови нарушается связывание и транспорт катионов (кальция, магния), гормонов (тироксина), билирубина и других веществ, что сопровождается рядом функциональных расстройств.

При дефиците гаптоглобина, белка из фракции α 2 -глобулинов, нарушается связывание и транспорт гемоглобина, освобождающегося при физиологическом гемолизе эритроцитов, и гемоглобин теряется с мочой.

Падение синтеза антигемофильного глобулина из фракции β 2 -глобулинов приводит к кровоточивости.

При недостатке трансферрина, относящегося к β 1 -глобулинам, нарушается перенос железа.

Основным последствием гипо- или агаммаглобулинемии является снижение иммунитета из-за нарушения выработки антител (γ-глобулинов). В то же время отсутствует реакция на гомологичные трансплантаты (не образуются антитела к чужеродной ткани и возможно ее приживление).

Гиперпротеинемия . Чаще развивается относительная гиперпротеинемия с повышением концентрации белков в крови, хотя абсолютное их количество не увеличивается. Такое состояние возникает при сгущении крови вследствие потери организмом воды.

Абсолютная гиперпротеинемия, как правило, связана с гиперглобулинемией. Например, увеличение содержания γ-глобулинов характерно для инфекционных заболеваний, когда происходит интенсивная продукция антител. Гипергаммаглобулинемия может возникать как компенсаторная реакция на недостаток в крови альбуминов. Например, при хронических заболеваниях печени (цирроз) нарушается синтез альбуминов; количество белков в крови не уменьшается, а возрастает за счет интенсивного синтеза γ-глобулинов. При этом могут образовываться неспецифические γ-глобулины.



Преобладание глобулинов над альбуминами изменяет альбуминово-глобулиновый коэффициент крови в сторону его уменьшения (в норме равен 2-2,5).

При некоторых патологических процессах и заболеваниях изменяется в крови процентное соотношение отдельных белковых фракций, хотя общее содержание белка существенно не изменяется. Например, при воспалении увеличивается концентрация защитного белка пропердина (от лат. perdere - разрушать). Пропердин в сочетании с комплементом обладает бактерицидными свойствами. В его присутствии подвергаются лизису бактерии и некоторые вирусы. Содержание пропердина в крови уменьшается при ионизирующей радиации.

Парапротеинемия . Значительная гиперпротеинемия (до 12- 15% и более белка в крови) отмечается при появлении большого количества аномальных глобулинов. Типичным примером изменения синтеза глобулинов является миелома (плазмоцитома). Миелома - разновидность лейкозов (парапротеинемический ретикулоз).

При γ-миеломе ненормальные глобулины синтезируются опухолевыми клонами плазматических клеток, которые поступают в периферическую кровь, составляя 60% и более от общего числа лейкоцитов. Патологический миеломный белок не обладает свойством антител. Он имеет малый молекулярный вес, проходит через почечный фильтр, откладывается в почках, способствуя в 80% случаев развитию почечной недостаточности. При миеломе резко ускоряется РОЭ (60-80 мм в час) вследствие преобладания глобулинов над альбуминами.

Существует заболевание макроглобулинемия Вальденстрема, характеризующееся опухолевидным разрастанием клеток лимфоидного ряда и повышенной продукцией макроглобулинов с молекулярным весом выше 1 000 000. Макроглобулины приближаются к глобулинам группы М (JqM); в норме их имеется не более 0,12%. При описываемом заболевании содержание их достигает 80% от общего количества белка в плазме, вязкость крови увеличивается в 10-12 раз, что затрудняет работу сердца.

Нарушение обмена при самых различных заболеваниях может сопровождаться появлением в крови совершенно новых белков. Например, в острой фазе ревматизма, при стрептококковой, пневмококковой инфекциях, инфаркте миокарда в сыворотке крови найден С-реактивный белок (С-реактивным он назван потому, что дает реакцию преципитации с С-полисахаридом пневмококков). С-реактивный белок при электрофорезе перемещается между α- и β-глобулинами; к антителам не относится. По-видимому, его появление отражает реакцию ретикулоэндотелиальной системы на продукты распада тканей.

К необычному белку крови относится также криоглобулин, который в электрическом поле передвигается с γ-глобулинами. Криоглобулин способен выпадать в осадок при температуре ниже 37°. Он появляется при миеломе, нефрозе, циррозе печени, лейкоцитах и других заболеваниях. Наличие криоглобулина в крови больных опасно, так как при сильном местном охлаждении белок выпадает в осадок, что способствует образованию тромбов и некрозу тканей.

Генные болезни человека

Генные болезни – это разнообразная по клинической картине группа заболеваний, обусловленная мутациями единичных генов.

Число известных в настоящее время моногенных наследственных заболеваний составляет около 4500. Встречаются эти заболевания с частотой 1: 500 - 1: 100000 и реже. Моногенная патология определяется примерно у 3% новорожденных и является причиной 10% младенческой смертности.

Наследуются моногенные заболевания в соответствии с законами Менделя.

Начало патогенеза любой генной болезни связано с первичным эффектом мутантного аллеля. Он может проявляться в следующих вариантах: отсутствие синтеза белка; синтез аномального белка; количественно избыточный синтез белка; количественно недостаточный синтез белка.

Патологический процесс, возникающий в результате мутации единичного гена, проявляется одновременно на молекулярном, клеточном и органном уровнях у одного индивида.

Существует несколько подходов к классификации моногенных болезней: генетический, патогенетический, клинический и др.

Классификация, основанная на генетическом принципе: согласно ей моногенные болезни можно подразделять по типам наследования – аутосомно-доминантные, аутосомно-рецессивные, Х-сцепленные доминантные, Х-сцепленные рецессивные, У-сцепленные (голандрические). Эта классификация наиболее удобна, т.к. позволяет сориентироваться относительно ситуации в семье и прогноза потомства.

Вторая классификация основана на клиническом принципе, т.е. на отнесении болезни к той или иной группе в зависимости от системы органов, наиболее вовлеченной в патологический процесс, - моногенные заболевания нервной, дыхательной, сердечно-сосудистой систем, органов зрения, кожи, психические, эндокринные и т.д.

Третья классификация основывается на патогенетическом принципе. Согласно ей все моногенные болезни можно разделить на три группы:

  1. наследственные болезни обмена веществ;
  2. моногенные синдромы множественных врожденных пороков развития;
  3. комбинированные формы.

Рассмотрим наиболее распространенные моногенные заболевания.

Нарушение обмена аминокислот .

Наследственные заболевания, обусловленные нарушением обмена аминокислот, составляют значительную часть генетической патологии детей раннего возраста. Большинство из них начинаются после достаточно короткого периода благополучного развития ребёнка, но в дальнейшем приводят к тяжелому поражению интеллекта и физических показателей. Встречается и острое течение этих заболеваний, когда состояние новорожденного резко ухудшается на 2-5-е сутки жизни. В такой ситуации высока вероятность летального исхода ещё до момента уточнения диагноза.

Абсолютное большинство этих болезней наследуется аутосомно-рецессивно. Вероятность повторного рождения больного ребёнка в семьях, где уже регистрировалась эта патология, составляет 25%.

Фенилкетонурия (ФКУ) – самое распространенное заболевание, вызванное нарушением аминокислотного обмена. Впервые было описано в 1934 году. Это заболевание наследуется аутосомно-рецессивно.

В Западной Европе один больной ФКУ обнаруживается среди 10000-17000 новорожденных, в Беларуссии и России частота ФКУ колеблется в пределах 1 случай на 6000-10000 новорожденных. Очень редко ФКУ встречается среди негров, евреев-ашкеназов, в Японии.

Основной причиной ФКУ является дефект фермента фенилаланин-4-гидроксилазы, который способствует превращению аминокислоты фенилаланина в тирозин. Фенилаланин относится к жизненно необходимым аминокислотам, которые не синтезируются в организме, а поступают с продуктами питания, содержащими белок. Фенилаланин входит в состав многих белков человека, имеет большое значение для созревания нервной системы.

Ген, определяющий структуру фенилаланин-4-гидроксилазы, локализован на длинном плече 12-й хромосомы, содержит 70000 пар нуклеиновых оснований. Чаще всего мутация этого гена вызвана заменой одного нуклеотида (90% всех случаев заболевания).

Дефект фермента при ФКУ приводит к нарушению реакции превращения фенилаланина в тирозин. В результате в организме больного накапливается избыточное количество фенилаланина и его производных: фенилпировиноградной, фенилмолочной, фенилуксусной и др. В то же время при ФКУ в организме больного формируется недостаток продуктов реакции: тирозина, являющегося важной частью обмена нейромедиаторов (катехоламинов и серотонина), и меланина, определяющего окрашивание кожи и волос у человека.

Избыток фенилаланина и его производных оказывает непосредственное повреждающее действие на нервную систему, функцию печени, обмена белков и других веществ в организме.

Беременность и роды при ФКУ у плода обычно не имеют каких-либо специфических особенностей. Новорожденных ребёнок выглядит здоровым, так как в период в период внутриутробного развития обмен веществ матери обеспечивает нормальный уровень фенилаланина в организме плода. После рождения ребенок начинает получать белок с молоком матери. Дефект фенилаланингидроксилазы препятствует обмену содержащегося в белке грудного молока фенилаланина, который начинает постепенно накапливаться в организме больного.

Первые клинические проявления ФКУ можно заметить у 2-4-месячного ребенка. Кожа и волосы начинают терять пигментацию. Глаза становятся голубыми. Часто появляются экземоподобные изменения кожных покровов: покраснения, мокнутие и шелушение щечек и складок кожи, коричневатые корочки в области волосистой части черепа. Возникает, а затем усиливается специфический запах, описываемый как «мышиный».

Ребёнок становится вялым, теряет интерес к окружающему. С 4 месяцев становится заметной задержка моторного и психического развития. Ребёнок значительно позже начинает сидеть, ходить, не всегда способен научиться разговаривать. Степень выраженности поражения нервной системы варьирует, но при отсутствии лечения обычно регистрируется глубокая умственная отсталость. Примерно у четверти больных детей во втором полугодии жизни возникают судороги. Особенно характерны кратковременные приступы, сопровождающиеся наклонами головы («кивки»). Дети с ФКУ старше 1 года обычно расторможены, эмоционально неустойчивы.

Диагностика ФКУ основывается не только на клиническом осмотре и генеалогических данных, но и на результатах лабораторных исследований (определение фенилпировиноградной кислоты в моче). Для уточнения диагноза необходимо определение уровня фенилаланина в крови ребенка (в норме содержание фенилаланина в крови не более 4 мг%, у больного ФКУ превышает 10, а иногда и 30 мг%).

Поскольку главной причиной поражения нервной системы при классической форме ФКУ является избыток фенилаланина, то ограничение его поступления с пищей в организм больного даёт возможность предупредить патологические изменения. С этой целью применяется специальная диета, обеспечивающая только минимальную возрастную потребность в фенилаланине для ребенка. Эта аминокислота входит в структуру большинства белков, поэтому из рациона больного исключаются высокобелковые продукты: мясо, рыба, творог, яичный белок, хлебобулочные изделия и др.

Раннее введение диеты (на 1-ом месяце жизни) и её регулярное соблюдение обеспечивает практически нормальное развитие ребенка.

Строгая диетотерапия рекомендуется до 10-12 лет. После этого объем обычных продуктов питания для больных ФКУ постепенно увеличивается, и пациенты переводятся на вегетарианское питание. В случае повышенной физической или умственной нагрузки рекомендуют использовать в пищу заменители белка.

В зрелом возрасте строгая диета необходима женщинам, больным ФКУ, которые планируют деторождение. Если уровень ФА крови беременной превышает нормальный, то её ребёнок будет иметь микроцефалию, врожденный порок сердца и другие аномалии.

Нарушение обмена соединительной ткани.

Абсолютное большинство этих болезней наследуется аутосомно-доминантно. При данном типе наследования больные встречаются в каждом поколении; у больных родителей рождается больной ребёнок; вероятность наследования составляет 100% - если хотя бы один родитель гомозиготен, 75% - если оба родителя гетерозиготны, и 50% - если один родитель гетерозиготен.

Синдром Марфана. Это одна из наследственных форм врожденной генерализованной патологии соединительной ткани, впервые описана в 1886 году В. Марфаном. Частота в популяции – 1: 10000-15000.

Этиологическим фактором синдрома Марфана (СМ) является мутация в гене фибриллина, локализованном в длинном плече 15-й хромосомы.

Больные синдромом Марфана имеют характерный внешний вид: они отличаются высоким ростом, астеническим телосложением, количество подкожно-жировой клетчатки у них снижено, конечности удлинены преимущественно за счет дистальных отделов, размах рук превышает длину тела (норме эти показатели совпадают). Отмечаются длинные тонкие пальцы – паукообразные (арахнодактилия), часто наблюдается «симптом большого пальца», при котором длинный 1-ый палец кисти в поперечном положении достигает ульнарного края узкой ладони. При охватывании 1-ым и 5-м пальцами запястья другой руки они обязательно перекрываются (симптом запястья). У половины больных отмечается деформация грудной клетки (воронкообразная, килеобразная), искривление позвоночника (кифоз, сколиоз), гиперподвижность суставов, клинодактилия мизинцев, сандалевидная щель. Со стороны сердечно-сосудистой системы наиболее патогномоничными являются расширение восходящей части аорты с развитием аневризмы, пролапс сердечных клапанов. Со стороны органов зрения наиболее характерны подвывихи и вывихи хрусталиков, отслойка сетчатки, миопия, гетерохромия радужки. У половины больных отмечаются паховые, диафрагмальные, пупочные и бедренные грыжи. Может наблюдаться поликистоз почек, нефроптоз, понижение слуха, глухота.

Психические и умственное развитие больных не отличается от нормы.

Прогноз жизни и здоровья определяется прежде всего состоянием сердечно-сосудистой системы. Средняя продолжительность жизни при выраженной форме синдрома Марфана около 27 лет, хотя часть больных доживает до глубокой старости.

При ведении беременных с СМ необходимо помнить о возможности расслоения аневризмы аорты и последующего её разрыва. Эти осложнения возникают обычно на поздних стадиях беременности.

Синдромом Марфана страдали президент США Авраам Линкольн, скрипач Николо Паганини.

Нарушение обмена углеводов.

Эти заболевания развиваются при врожденной недостаточности ферментов или транспортных систем мембран клеток, которые необходимы для обмена какого-либо углевода.

Клинические проявления этих патологических состояний очень разнообразны. Но для многих из них характерно начало болезни после того, как в организм ребёнка попадает соответствующий углевод. Так, галактоземия развивается с первых дней жизни ребёнка после того, как он начинает питаться молоком, фруктоземия – обычно после введения соков, сахара и блюд прикорма. Нарушение обмена углеводов часто сопровождается нарушением их всасывания в кишечнике (синдром мальабсорбции). Накапливающийся в просвете кишки сахар увеличивает содержание воды в тонком кишечнике. Всё это приводит к диарее (поносам), вздутию и болям в животе, срыгиванию.

Однако при дефектах обмена углеводов определяется поражение и других органов: нервной системы, печени, глаз и т.д.

Эти заболевания встречаются относительно редко. Исключением является врожденная лактазная недостаточность.

Галактоземия – это патология впервые была описана в 1908 году. Ген этого заболевания локализован на коротком плече 9-й хромосомы.

Причиной классической формы галактоземии является дефицит фермента галактозо-1-фосфоуридилтрансферазы, который приводит к накоплению в тканях больного ребёнка галактозо-1-фосфата. Это заболевание наследуется по аутосомно-рецессивному типу и встречается с частотой 1: 15000-50000.

Галактоза – основной фермент молока, в том числе и женского. Поэтому патологические изменения возникают с первых дней жизни ребёнка, как только он начинает вскармливаться молоком.

Сначала появляется рвота, диарея, желтушность кожи, которая не исчезает и после периода новорожденности. В дальнейшем увеличивается печень и селезенка. При приёме молочной пищи у ребенка регистрируется низкий уровень глюкозы в крови. В первые месяцы жизни ребёнка формируется помутнение хрусталиков глаз (катаракта), нарушаются функции почек. Постепенно становится заметной задержка умственного и физического развития, возможно возникновение судорог, даже смерть ребёнка на фоне очень низкого уровня глюкозы в крови или цирроза печени.

Главным в лечении этого дефекта обмена является назначение специальной диеты, не содержащей продуктов с галактозой. Раннее начало подобной терапии предупреждает поражение печени и почек, тяжелые неврологические изменения у таких больных. Возможно рассасывание катаракты. Уровень глюкозы крови нормализуется. Однако даже у пациентов, которые получают специальную диету с периода новорожденности, могут регистрироваться некоторые признаки поражения нервной системы и гипофункция яичников у девочек.

В настоящее время известны и другие типы галактоземии, которые не сопровождаются тяжелым нарушением состояния здоровья. Так, при атипичных вариантах заболевания, связанных с дефицитом галактокиназы и уридиндифосфогалактозо-4-эпимеразы, клинические проявления обычно отсутствуют. При недостаточности фермента галактокиназы единственным симптомом является катаракта. Поэтому у детей с врожденной катарактой необходимо исследовать уровень галактозы в моче и крови. При этом заболевании рано начатая диетотерапия тоже способствует восстановлению прозрачности хрусталика.

Нарушение обмена гормонов.

Врожденный гипотиреоз – один из самых распространенных дефектов обмена веществ. Это заболевание обнаруживается примерно у 1 на 4000 новорожденных Европы и Северной Америки. Несколько чаще эта патология встречается у девочек.

Причиной заболевания является полная или частичная недостаточность гормонов щитовидной железы (тиреоидных), которая сопровождается снижением скорости обменных процессов в организме. Подобные изменения приводят к торможению роста и развития ребёнка.

Врожденный гипотиреоз разделяют на первичный, вторичный и третичный.

Первичный гипотиреоз составляет около 90% всех случаев заболевания. Причиной его является поражение самой щитовидной железы. В большинстве случаев обнаруживается её отсутствие (аплазия) или недоразвитие (гипоплазия). Часто щитовидная железа оказывается не в обычной месте (на корне языка, в трахее и т.д.) Эта форма заболевания обычно регистрируется как единственный случай в семье. Однако описаны аутосомно-рецессивный и аутосомно-доминантный типы наследования порока развития щитовидной железы.

Примерно 10% всех случаев первичного гипотиреоза обусловлены дефектом образования гормонов. При этой форме заболевания отмечается увеличение размеров щитовидной железы у ребёнка (врожденный зоб). Данная патология наследуется аутосомно-рецессивно.

Вторичный и третичный гипотиреоз регистрируется только в 3-4% случаев. Эти формы заболевания обусловлены нарушением функции гипофиза и гипоталамуса, наследуется аутосомно-рецессивно.

В последние годы описаны случаи врожденного гипотиреоза, вызванные нечувствительностью тканей к действию тиреоидных гормонов. Это нарушение также характеризуется аутосомно-рецессивным типом наследования.

Недостаток тиреоидных гормонов приводит к задержке дифференцировки мозга, уменьшению количества нейронов, нейромедиаторов и других веществ. Все это вызывает угнетение функции ЦНС и задержку психического развития ребенка.

Кроме того, при гипотиреозе снижается активность ферментных систем, скорость окислительных процессов, происходит накопление недоокисленных продуктов обмена. В результате замедляется рост и дифференцировка практические всех тканей организма ребёнка (скелета, мышц, сердечно-сосудистой и иммунной систем, эндокринных желез и т.д.)

Клиническая картина всех форм гипотиреоза практически однотипна. Различается только степень тяжести заболевания. Возможно как легкое, малосимптомное течение при частично сохраненной функции тиреоидных гормонов, так и очень тяжелое состояние больного.

Врожденный гипотиреоз развивается постепенно в течение первых месяцев жизни ребенка. Несколько позже заболевание проявляется у детей, находящихся на естественном вскармливании, так как грудное молоко содержит тиреоидные гормоны.

У 10-15% больных детей первые признаки гипотиреоза можно обнаружить уже на первом месяце жизни. Роды таким ребёнком обычно происходят позже 40 недель (переношенная беременность). Новорожденные с этим заболеванием имеют большую массу тела, часто выше 4 кг. При осмотре такого ребёнка можно отметить отёчность тканей лица, большой язык, лежащий на губах, отёки в виде «подушечек» на тыльной поверхности кистей и стоп. В дальнейшем наблюдается грубый голос при плаче.

Больной ребёнок плохо удерживает тепло, вяло сосёт. Часто желтушность кожи сохраняется до 1 месяца и более.

Полного развития клиническая картина обычно достигает к 3-6 месяцам. Ребенок начинает отставать в росте, плохо набирает массу тела, лениво сосет. Кожа больного становится сухой, желтовато-бледной, утолщенной, часто шелушится. Обнаруживается большой язык, низкий хриплый голос, ломкие, сухие волосы, обычно холодные кисти и стопы, запоры. Мышечный тонус снижен. В этот период формируются особенности лицевого скелета: широкая запавшая переносица, широко расставленные глаза, низкий лоб.

После 5-6 месяцев становится заметной нарастающая задержка психомоторного и физического развития больного ребенка. Ребенок значительно позже начинает сидеть, ходить, формируется умственная отсталость. Изменяются пропорции скелета: укорачивается шея, конечности и пальцы, усиливаются грудной кифоз и поясничный лордоз, кисти и стопы становятся широкими. Ребенок начинает значительно отставать в росте. Сохраняются и усугубляются деформация лица, восковая бледность и утолщение кожи, низкий грубый голос. Мышечный тонус снижен. Больные страдают запорами. При осмотре обращается внимание на увеличение камер сердца, глухость его тонов, брадикардию, вздутый живот, пупочные грыжи. Лабораторное исследование обнаруживает нарушение возрастной дифференцировки скелета, анемию, гиперхолестеринемию.

Диагноз гипотиреоза подтверждается исследованием тиреотропного гормона гипофиза (ТТГ), тиреоидных гормонов: трийодтиронина (ТЗ) и тироксина (Т4) крови. Для больных характерно снижение уровня Т3 и Т4 крови. Уровень ТТГ увеличен при первичной форме заболевания и является низким при вторичном и третичном гипотиреозе.

Главным в лечении детей с врожденным гипотиреозом является постоянная, пожизненная терапия препаратами гормонов щитовидной железы. Если ребенок начинает принимать эти лекарственные средства на первом месяце жизни, то возможно обратное развитие всех патологических изменений в нервной системе. При условии раннего начала лечения и постоянного приема необходимой дозы тиреоидных гормонов под контролем их содержания в крови в абсолютном большинстве случаев психомоторное и физическое развитие больных детей оказывается в пределах нормы.

Особенности ухода за больными с наследственной патологией.

Пациенты, имеющие наследственную патологию, нуждаются в постоянном наблюдении медицинских работников. Хронические прогрессирующее течение заболевания делает необходимым длительное пребывание в стационарах разного профиля, частые обращения в амбулаторные учреждения.

Уход за такими больными представляет собой сложную задачу. Часто приходится иметь дело не с одним человеком, а с целой семьей, так как даже физически здоровые родственники могут нуждаться в психологической поддержке, помощи, а иногда и в превентивном лечении.

Режим дня больного с наследственной патологией должен быть по возможности приближен к обычному для соответствующего возраста. Организация прогулок, игр, учёбы, общения со сверстниками способствуют социальной адаптации больных и их семей. При заболеваниях, характеризующихся нарушением умственного развития, важно обеспечить частое общение с ребёнком, разнообразие игрушек и пособий, развивающие занятия. Формированию моторных навыков помогают регулярные занятия лечебной физкультурой и массажем.

Питание больных должно быть сбалансировано по основным ингредиентам и соответствовать возрасту. В случаях необходимости кормления через зонд при нарушении жевания и глотания дети должны получать протертое мясо, овощи и фрукты в соответствии с возрастом, а не только молоко и каши. Если такой ребёнок будет вскармливаться только молоком и кашами, он будет отставать по массе и длине тела, возникнет анемия и иммунодефицитное состояние.

Особого внимания заслуживает специальная диетотерапия при некоторых заболеваниях обмена веществ (фенилкетонурии, галактоземии, гиперхолестеринемии и т.д.) Необходима постоянная помощь родителям и семьям больных в организации питания. Кроме того, подобная диетотерапия должна сопровождаться регулярным контролем показателей массы и длины тела ребёнка: на 1-м голу жизни – ежемесячно, до трех лет – 1 раз в 3 месяца до подросткового возраста – каждое полугодие.

Дети с наследственной патологией часто страдают нарушением естественных отправлений. Для предупреждения запоров в питание больных вводят продукты, богатые клетчаткой, соки. При отсутствии самостоятельного стула нужно поставить очистительную клизму. Некоторые болезни обмена веществ и пороки развития органов желудочно-кишечного тракта сопровождаются учащенным стулом. В таких случаях нужно особенно тщательно следить за сухостью кожи ребёнка. Каждый раз ребенка необходимо обмыть теплой водой, промокнуть кожу мягкой салфеткой и обработать складки кожи растительным маслом или детским кремом.

Наследственные заболевания могут сопровождаться нарушением мочеиспускания. При такой патологии проводится учёт количества выпитой жидкости. При атонии мочевого пузыря, вызванной поражением нервной системы, используется его катетеризация.

Больные с наследственной патологией нуждаются в создании оптимальных условий по температуре и влажности в помещениях, где они находятся, поскольку такие дети часто страдают нарушением терморегуляции и склонны к перегреванию и переохлаждению.

Кроме того, комнаты, в которых ребенок проводит время, должны быть освобождены от опасных предметов (колющих, режущих, очень горячих и т.д.)

Пациенты, вынужденные длительное время проводить в лежащем положении, могут иметь пролежни. С целью их предупреждения необходимы: частая смена нательного и постельного белья; разглаживание складок на ткани, соприкасающейся с кожей больного; использование специальных подкладочных резиновых кругов или тканевых матрасов; систематическая смена положения тела больного. В таких случаях кожу больного необходимо обрабатывать камфорным спиртом или одеколоном 2-3 раза в день и затем присыпать тальком.

Важнейшей частью ухода за пациентами с наследственной патологией является работа с их родственниками. Доброжелательное отношение к больному, разъяснение родителям сущности заболевания, освобождение их от чувства вины перед ребенком, создание положительной установки на лечение – все это снижает тревожность в семье и улучшает результаты реабилитационных мероприятий.



Загрузка...