caspian72.ru

В каком году и кем открыт электрон? Физик, открывший электрон: имя, история открытия и интересные факты. История открытия электрона Томсон открыл электрон

Кикоин А.К. Открытие электрона //Квант. - 1985. - № 3. - С. 18-20.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Слово «электрон» - название одной из заряженных элементарных частиц - и производные от него, пожалуй, чаще всего встречаются в наши дни в научно-технической литературе. Сравнительно недавно появилось слово «электроника», обозначающее, с одной стороны, науку о взаимодействиях электронов с электромагнитными полями, а с другой - новую область техники. Такие прилагательные, как «электронный», «электронная» и т. д., широко вошли в наш язык и в нашу жизнь. Достаточно напомнить, например, о существовании различных электронных приборов и электронных вычислительных машин.

Когда, кем и как был открыт электрон? Когда, кто и как определил его основные свойства и выяснил его роль в природе?

Лучи или частицы?

Открытие электрона представляет собой завершение длившегося несколько десятилетий исследования газового разряда, то есть процесса прохождения электрического тока через газ («Физика 9», § 70-72). В частности, приблизительно к середине прошлого века было выяснено, что если к электродам, впаянным в стеклянную трубку с газом, приложить достаточно высокое напряжение, то через газ проходит электрический ток, а сам газ при этом светится. Характер свечения зависит от давления газа и приложенного напряжения, а цвет света определяется природой газа. Однако при достаточно малом давлении (около одного паскаля, то есть стотысячной доли атмосферы) свечение газа почти исчезает (хотя ток продолжает идти), но зато начинает светиться зеленоватым светом стекло трубки.

Что же происходит в разрядной трубке после исчезновения свечения газа? По этому поводу возник длительный спор между физиками, наиболее активно изучавшими это явление.

Немецкие физики (Г. Герц, Э. Гольдштейн) считали, что из катода трубки исходят особые лучи, которые и вызывают свечение стекла. Их поэтому стали называть катодными лучами . Герц, открывший электромагнитные волны, естественно, склонен был считать, что катодные лучи - это особые электромагнитные волны, похожие на свет, но свет невидимый.

Английские физики (У. Крукс, А. Шустер, затем Дж. Дж. Томсон) полагали, что из катода выходят не лучи, а какие-то отрицательно заряженные частицы и что именно под их воздействием возникает свечение стекла. Крукс, например, утверждал, что это газовые молекулы, которые, удаляясь о катод, приобретают отрицательный заряд и затем ускоряются силой притяжения к аноду. В пользу этого говорило то, что катодные лучи отклоняются магнитным полем. Об этом важном факте знали, конечно, и немецкие физики, но в то время еще не было твердо установлено, что электромагнитные волны с магнитным полем не взаимодействуют.

Обеими спорящими сторонами было твердо установлено, что свойства катодных лучей не зависят от того, из какого материала сделан катод. Спор этот был весьма плодотворным, так как каждая группа ученых старалась придумать и поставить такие опыты, которые доказали бы их правоту.

Решающие опыты были выполнены в 1897 году английским физиком Джозефом Джоном Томсоном. Опыты эти состояли в наблюдении движения заряженных частиц в электрическом и магнитном полях.

Движение заряженных частиц в электрическом и магнитном полях

В прошлом номере в заметке «О числе Фарадея и удельном заряде заряженной частицы» было показано, что скорость υ и ускорение а заряженной частицы в электрическом поле определяются удельным зарядом частицы \(~\dfrac{q}{m}\) (q - заряд частицы, m - ее масса):

\(~\upsilon = \sqrt{2 \dfrac{q}{m} U}\) , \(~a = \dfrac{q}{m} E\) ,

где U - напряжение, а E - напряженность поля.

Но оказывается, движение частицы в магнитном поле тоже определяется ее удельным зарядом. Покажем это.

На частицу с зарядом q (для простоты будем считать его положительным), движущуюся с начальной скоростью \(~\vec \upsilon\) в магнитном поле с индукцией \(~\vec B\), действует сила Лоренца \(~\vec F_L\) («Физика 9», §89). Если вектор \(~\vec \upsilon\) перпендикулярен вектору \(~\vec B\), то сила Лоренца по модулю равна qυB и направлена перпендикулярно вектору скорости и вектору магнитной индукции. Поскольку сила перпендикулярна скорости частицы, она заставляет частицу двигаться по окружности, сообщая ей центростремительное ускорение. Второй закон Ньютона для этого случая имеет вид

\(~m \dfrac{\upsilon^2}{r} = q \upsilon B\) ,

откуда для радиуса r окружности получаем

\(~r = \dfrac{m \upsilon}{qB} = \dfrac{\upsilon}{B \dfrac{q}{m}}\) .

Таким образом, при заданном значении магнитной индукции и начальной скорости частицы радиус кривизны ее траектории действительно определяется удельным зарядом частицы \(~\left(\dfrac{q}{m} \right)\).

Из последнего равенства можно получить формулу для определения самого удельного заряда:

\(~\dfrac{q}{m} = \dfrac{\upsilon}{Br}\) .

Радиус окружности r и индукцию В измерить нетрудно. Но нужно еще знать скорость υ частицы, которую измерить не так просто. Томсон сумел обойти эту трудность. И вот каким способом.

Опыты Дж. Дж. Томсона

Целью опытов Томсона было определение удельного заряда тех предполагаемых частиц, которые, по мнению английских физиков, образуют катодные лучи. Прибор, созданный Томсоном, схематически показан на рисунке.

В стеклянный сосуд впаяны катод К , и анод А , диафрагма и пластины конденсатора. Между К и А подается достаточно высокое напряжение, необходимое для возникновения катодных лучей. Отверстия в аноде и диафрагме «вырезают» узкий пучок лучей, попадающий на противоположную стенку сосуда, где он вызывает свечение стекла. Пунктирная окружность на рисунке изображает катушки (вне сосуда), создающие магнитное поле, перпендикулярное электрическому полю конденсатора (и плоскости рисунка).

Когда в трубке создано только электрическое поле конденсатора и верхняя пластина заряжена положительно, пучок лучей, если он действительно состоит из отрицательно заряженных частиц, отклоняется вверх (траектория a на рисунке). Если создано только магнитное поле, направленное от нас за плоскость рисунка, пучок отклоняется вниз (траектория b ). По свечению торцевой стенки трубки легко установить, куда именно попадает пучок.

Но можно подобрать такие значения напряженности электрического поля \(~\vec E\) и магнитной индукции \(~\vec B\), чтобы пучок вовсе не отклонялся и двигался по прямолинейной траектории (показанной на рисунке красным цветом). Это означает, что электрическая сила, действующая на частицу, равна по модулю силе Лоренца: qE = qυB . Отсюда для скорости частицы получаем выражение \(~\upsilon = \dfrac{E}{B}\). Подставив его в формулу для удельного заряда, находим

\(~\dfrac{q}{m} = \dfrac{E}{B^2 r}\) . (*)

Все в опыте Томсона происходило так, как и предполагалось. В электрическом поле пучок двигался по одной траектории (a ), в магнитном - по другой (b ). При одновременном действии обоих полей пучок не отклонялся вовсе.

По формуле (*), в которую входят легко измеряемые величины (и не входит скорость частиц), можно было определить удельный заряд частиц, образующих то, что до того называлось катодными лучами. Удельный заряд этих частиц оказался чудовищно большим: 1,76·10 11 Кл/кг. Эти-то частицы и получили название электронов. Поэтому теперь принято считать, что год открытия электрона - 1897, а автор этого важнейшего открытия - Джозеф Джон Томсон.

Так как электроны вылетают из катода разрядной трубки всегда, независимо от того, из какого материала изготовлен катод, можно было сделать вывод о том, что электроны входят в состав любого атома. Эту гипотезу Томсон высказал в том же 1897 году.

В течение нескольких последующих лет Томсон (а также и другие ученые) показал, что частицы, вылетающие из нагретого металла при термоэлектронной эмиссии, имеют тот же удельный заряд, то есть что это тоже электроны. Тот же удельный заряд имеют и частицы, вырываемые из металлов светом. И это тоже электроны!

За теоретические и экспериментальные исследования прохождения электричества через газы (приведшие к открытию электрона) Дж. Дж. Томсон в 1906 году получил Нобелевскую премию по физике.

О массе и заряде электрона

Зная значение удельного заряда электрона, еще ничего нельзя сказать ни о значении заряда, ни о значении массы электрона по отдельности. Однако к концу прошлого века было уже известно значение удельного заряда иона водорода, а также то, что заряд иона водорода по модулю (но не по знаку) равен заряду электрона. А это позволяет кое-что сказать о массе электрона. В самом деле, удельные заряды электрона и иона водорода равны соответственно

\(~\dfrac{e}{m_e} = 1,76 \cdot 10^{11}\) Кл/кг, \(~\dfrac{e}{m_H} = 9,65 \cdot 10^{7}\) Кл/кг

(здесь е - модуль заряда электрона, как его принято обозначать, m e - масса электрона, m H - масса иона водорода). Разделив \(~\dfrac{e}{m_e}\) на \(~\dfrac{e}{m_H}\), получаем, что масса электрона примерно в 1840 раз меньше массы иона водорода.

Приблизительно через 15 лет после опытов Томсона Р. Милликен в США и А. Ф. Иоффе в России непосредственно измерили заряд электрона, который оказался равным 1,6·10 -19 Кл. Отсюда для массы электрона получается значение 9,1·10 -31 кг. Это самые маленькие значения заряда и массы в природе.

Дебаты о том, кем открыт электрон, не утихают до сих пор. В роли первооткрывателя элементарной частицы, кроме Джозефа Томсона, одни историки науки видят Гендрика Лоренца и Питера Зеемана, другие - Эмиля Вихерта, третьи - Филиппа Ленарда. Так кто он - ученый, открывший электрон?

Атом - значит неделимый

Понятие "атом" в обиход было введено философами. Древнегреческий мыслитель Левкипп еще в V веке до н. э. предположил, что все в мире состоит из мельчайших частиц. Его ученик - Демокрит, назвал их атомами. По мнению философа, атомы - "кирпичики" мироздания, неделимые и вечные. От их формы и внешней структуры зависят свойства веществ: атомы текучей воды - гладкие, металла - с профильными зубчиками, придающими твердость телу.

Выдающийся русский ученый М. В. Ломоносов, основатель атомно-молекулярной теории считал, что в составе простых веществ корпускулы (молекулы) образованы одним видов атомов, сложных - различными.

Химик-самоучка (Манчестер) в 1803 г., опираясь на экспериментальные данные и, приняв за условную единицу массу атомов водорода, установил относительные атомные массы некоторых элементов. Атомистическая теория англичанина имела огромное значение для дальнейшего развития химии и физики.

К началу XX века был накоплен целый ряд экспериментальных данных, доказывающих сложность строения атома. Сюда можно отнести явление фотоэффекта (Г. Герц, А. Столетов 1887 г.), открытие катодных (Ю. Плюккер, В. Крукс, 1870 г.) и рентгеновских (В. Рентген, 1895 г.) лучей, радиоактивности (А. Беккерель, 1896 г.).

Ученые, работавшие с катодными лучами, разделились на два лагеря: одни предполагали волновую природу явления, другие - корпускулярную. Ощутимых результатов добился профессор Высшей нормальной школы (Лиль, Франция) Жан Батист Перен. В 1895 г. он показал в ходе экспериментов, что катодные лучи представляют собой поток отрицательно заряженных частиц. Может Перен - физик, открывший электрон?

На пороге великих свершений

Физик и математик Джордж Стони (Королевский Ирландский университет, Дублин) в 1874 году озвучил предположение о дискретности электричества. В каком году и кем был В ходе экспериментальных работ по электролизу именно Д. Стони определил значение минимального электрического заряда (правда, полученный результат (10 -20 Кл) был в 16 раз меньше действительного). Единицу элементарного электрического заряда в 1891 году ирландский ученый назвал "электрон" (от древнегреческого "янтарь").

Через год Гендрик Лоренс Нидерланды) сформулировал главные положения своей электронной теории, согласно которой в основе строения любого вещества лежат дискретные электрические заряды. Этих ученых не считают первооткрывателем частицы, но их теоретические и практические изыскания стали надежным фундаментом для будущего открытия Томсона.

Непоколебимый энтузиаст

На вопрос о том, кто и когда открыл электрон, энциклопедии дают четкий и однозначный ответ - Джозеф Джон Томсон в 1897 году. Так в чем же заслуга английского физика?

Отец будущего президента Лондонского Королевского общества был продавцом книг и с детских лет привил сыну любовь к печатному слову и тягу к новым знаниям. После окончания Оуэнс-колледжа (с 1903 г. - и Кембриджского университета в 1880 году молодой математик Джозеф Томсон поступил на работу в Кавендишскую лабораторию. Экспериментальные исследования целиком увлекли молодого ученого. Коллеги отмечали его неутомимость, целеустремленность и необычайную увлеченность практической работой.

В 1884 году, в возрасте 28 лет, Томсон был назначен директором лаборатории, сменив на этом посту лорда К. Рэлея. Под руководством Томсона, лаборатория в последующие 35 лет превратилась в один из крупнейших центров мировой физики. Отсюда начали свой путь Н. Бор, П. Ланжевен.

Внимание к деталям

Работы по исследованию катодных лучей Томсон начал с проверки опытов его предшественников. Для многих экспериментов была изготовлена специальная аппаратура по личным чертежам директора лаборатории. Получив качественное подтверждение опытов, Томсон и не думал останавливаться на достигнутом. Основную свою задачу он видел в точном количественном определение природы лучей и составляющих их частиц.

Новая трубка, сконструированная для следующих опытов, имела в своем составе не только привычные катод и ускоряющие электроды (в виде пластин и колец) с отклоняющим напряжением. Поток корпускул направлялся на экран, покрытый тонким слоем вещества, светящегося при ударах частиц. Потоком предполагалось управлять совместным воздействием электрических и магнитных полей.

Составные части атома

Первооткрывателем быть трудно. Еще труднее отстоять свои убеждения, которые идут вразрез с устоявшимися тысячелетиями понятиями. Вера в себя, в свою команду и сделала Томсона тем человеком, кем открыт электрон.

Опыт дал ошеломляющие результаты. Масса частиц оказалась в 2 тыс. раз меньше, чем у ионов водорода. Отношение заряда корпускулы к ее массе не зависит от скорости потока, свойств материала катода, природы газовой среды, в которой происходит разряд. Напрашивался вывод, противоречащий всем устоям: корпускулы - универсальные частицы вещества в составе атома. Раз за разом, Томсон усердно и внимательно проверял результаты экспериментов и расчетов. Когда сомнений не осталось, состоялся доклад о природе катодных лучей Лондонскому королевскому обществу. Весной 1897 года атом перестал быть неделимым. В 1906 году Джозеф Томсон был удостоен Нобелевской премии по физике.

Неизвестный Иоганн Вихерт

Имя преподавателя геофизики Кёнингсбёрского, а затем Гёттингенского университета, исследователя сейсмографии нашей планеты Иоганна Эмиля Вихерта, больше известно в профессиональных кругах геологов и географов. Но знаком он и ученым-физикам. Это единственный человек, кого официальная наука, наряду с Томсоном, признает первооткрывателем электрона. И если уж быть абсолютно точным, работа с описанием опытов и расчетов Вихерта была опубликована в январе 1897 года - на четыре месяца раньше доклада англичанина. Кем открыт электрон - уже исторически решено, но факт остается фактом.

Для справки: ни в одной из своих работ Томсон не употребил термин "электрон". Он использовал название "корпускулы".

Кто открыл протон, нейтрон и электрон?

После обнаружения первой элементарной частицы стали выдвигаться предположения о возможном строении атома. Одна из первых моделей была предложена самим Томсоном. Атом, по его словам, напоминает кусочек пудинга с изюмом: в положительно заряженное тело вкраплены отрицательные частицы.

В 1911 году (Новая Зеландия, Великобритания) предположил, что модель атома имеет планетарную структуру. Спустя два года он выдвинул гипотезу о существовании в ядре атома положительно заряженной частицы и, получив ее экспериментально, назвал протоном. Он же предсказал наличие в ядре нейтральной частицы с массой протона (нейтрон был открыт в 1932 г. английским ученым Дж. Чедвиком). В 1918 году Джозеф Томсон передал управление лабораторией Эрнесту Резерфорду.

Надо ли говорить, что открытие электрона позволило по-новому взглянуть на электрические, магнитные и оптические свойства вещества. Трудно переоценить роль Томсона и его последователей в развитии атомной и ядерной физики.

День 30 апреля 1897 года официально считается днем рождения первой элементарной частицы - электрона. В этот день глава Каведишской лаборатории и член Лондонского королевского общества Джозеф Джон Томсон сделал историческое сообщение "Катодные лучи " в Королевском институте Великобритании, в котором объявил, что его многолетние исследования электрического разряда в газе при низком давлении завершилось выяснением природы катодных лучей. Поместив газоразрядную трубку в скрещенные магнитное и электрическое поля, он по наблюдению компенсирующего эффекта этих полей надежно определил удельный заряд частиц, поток которых и составлял катодные лучи .

Идея о дискретности электрического заряда прочно утвердилась в науке благодаря предшествующим исследованиям электрических явлений. Еще Майкл Фарадей (1791-1867) в первой половине 1830-х годов при исследовании прохождения тока через электролиты установил, что для выделения на электроде одного грамм-эквивалента любого вещества требуется пропустить через раствор одно и то же количество электричества, которое стали называть числом Фарадея.

В своей работе он писал: "Атомы тел... содержат равные количества электричества, естественно связанного с ними". Но все же он не сделал вывод о существовании минимального элементарного заряда.

К такому выводу из законов электролиза пришел в 1874 году ирландский физик Стони Стоней (1826-1911), а затем в 1891 году он постулировал существование в атоме заряда, назвав его электроном. Но в этих прогнозах подразумевалось, конечно, что носителем отрицательного электричества будет частица вещества типа ионов в электролите, осаждающихся на положительном электроде.

Однако полученный Дж. Дж. Томсоном результат оказался совершенно неожиданным и даже парадоксальным для современников. Прежде всего проделанная серия экспериментов показала, что результаты измерений с катодными лучами совершенно не зависели от типа газа, в котором проходил разряд. Кроме того, измеренное отношение e/m (удельный заряд) получилось аномально большим: оно оказалось почти в 2 тысячи раз больше отношения величины элементарного электрического заряда к массе наилегчайшего атома водорода. Он также подчеркнул, что открытые им частицы входят составной частью в атомы любого газа. Приведем здесь слова Дж. Дж. Томсона по данному поводу: "В результате этого, очевидно, получается значение заряда, не зависящее от природы газа, так как носители заряда те же самые для любого газа. Таким образом, катодные лучи представляют собой новое состояние материи, состояние, в котором деление материи идет много дальше, чем в случае обычного газообразного состояния, ... эта материя представляет собой то вещество, из которого построены все химические элементы".


Еще до открытия электрона Дж. Дж. Томсон достоверно доказал корпускулярную природу катодных лучей, которые многими видными учеными (Генрих Герц, Филипп Ленард и др.) принимались за электромагнитные волны. Это же сделал и И. Пулюй.

Позднее (1903) Дж. Дж. Томсон выдвинул модель атома, в которую электроны входили в виде точечных отдельных частиц, плавающих в непрерывной положительно заряженной среде атома. Следует отдавать себе отчет, насколько трудно было тогда представить атом в виде пустоты, в которой и положительные заряды сосредоточены в малом объеме центрального ядра. (Все же подобная планетарная модель была предложена еще раньше французским ученым Жан Перреном в 1901 году и затем в 1904 году японским физиком Хантаро Нагаока, который электроны в атоме сравнивал с кольцами планеты Сатурн). Дж. Дж. Томсон в 1904 году ввел также представление о том, что электроны в атомах разделяются на отдельные группы и тем самым предопределяют периодичность свойств химических элементов. Малая величина массы электрона была воспринята как мера инерции, присущая самому электрическому полю частицы. Еще в начале своей научной деятельности (1881) Дж. Дж. Томсон показал, что электрически заряженная сфера увеличивает свою инертную массу на определенную величину, зависевшую от величины заряда и радиуса сферы, и тем самым он ввел понятие электромагнитной массы. Полученное им соотношение было использовано для оценки размера электрона в предположении, что вся его масса имеет электромагнитную природу. Этот классический подход показал, что размеры электрона в сотни тысяч раз меньше размеров атома.

Интересно, что открытие электрона опередило открытие протона, к которому привели исследования каналовых лучей в трубке Крукса. Эти лучи были открыты в 1886 году немецким физиком Эугеном Гольштейном (1850-1930) по свечению, образующемуся в проделанном в катоде канале.

В 1895 году Ж. Перрен установил положительный заряд, переносимый каналовыми частицами. Немецкий физик Вильгельм Вин (1864-1928) в 1902 году по измерениям в скрещенных магнитном и электрическом полях определил удельный заряд частиц, который при наполнении трубки водородом соответствовал весу положительного иона атома водорода.

Открытие электрона сразу оказало влияние на все дальнейшее развитие физики. В 1898 году несколько ученых (К. Рикке, П. Друде, и Дж. Томсон) независимо выдвинули концепцию свободных электронов в металлах. Эта концепция в дальнейшем была положена в основу теории Друде-Лоренца. А. Пуанкаре свою фундаментальную работу по теории относительности озаглавил "О динамике электрона". Но все это было не только началом бурного развития физики электронов, но и началом революционного преобразования основных физических положений. С открытием электрона рухнуло представление о неделимости атома, и вслед за этим начали формироваться исходные идеи совершенно неклассической теории поведения электронов в атомах.

За прошедшее столетие значение открытия электрона непрерывно возрастало.

Его работы посвящены изучению прохождения электрического тока через разреженные газы, исследованию катодных и рентгеновских лучей, атомной физике. Он также разработал теорию движения электрона в магнитном и электрическом полях. А в 1907 году он предложил принцип действия масс-спектрометра. За работы по исследованию катодных лучей и открытие электрона ему присуждена Нобелевская премия за 1906 год.

Электрон представляет собой субатомную частицу, реагирующую на воздействие и электрических, и магнитных полей.

На протяжении всей второй половины XIX века физики активно изучали феномен катодных лучей. Простейший аппарат, в котором они наблюдались, представлял собой герметичную стеклянную трубку, заполненную разреженным газом, в которую с двух сторон было впаяно по электроду: с одной стороны катод , подключавшийся к отрицательному полюсу электрической батареи; с другой - анод , подключавшийся к положительному полюсу. При подаче на катодно-анодную пару высокого напряжения разреженный газ в трубке начинал светиться, причем при низких напряжениях свечение наблюдалось лишь в области катода, а при повышении напряжения - внутри всей трубки; однако при откачивании газа из трубки, начиная с какого-то момента, свечение исчезало уже в области катода, сохраняясь около анода. Это свечение ученые и приписали катодным лучам .

К концу 1880-х годов дискуссия о природе катодных лучей приняла острый полемический характер. Подавляющее большинство видных ученых немецкой школы придерживалось мнения, что катодные лучи представляют собой, подобно свету, волновые возмущения невидимого эфира. В Англии же придерживались мнения, что катодные лучи состоят из ионизированных молекул или атомов самого газа. У каждой стороны имелись веские доказательства в пользу своей гипотезы. Сторонники молекулярной гипотезы справедливо указывали на тот факт, что катодные лучи отклоняются под воздействием магнитного поля, в то время как на световые лучи магнитное поле никак не воздействует. Следовательно, они состоят из заряженных частиц. С другой стороны, сторонники корпускулярной гипотезы никак не могли объяснить ряда явлений, в частности обнаруженного в 1892 году эффекта практически беспрепятственного прохождения катодных лучей через тонкую алюминиевую фольгу.

Наконец в 1897 году молодой английский физик Дж. Дж. Томсон положил конец этим спорам раз и навсегда, а заодно прославился в веках как первооткрыватель электрона. В своем опыте Томсон использовал усовершенствованную катодно-лучевую трубку, конструкция которой была дополнена электрическими катушками, создававшими (согласно закону Ампера) внутри трубки магнитное поле, и набором параллельных электрических конденсаторных пластин, создававших внутри трубки электрическое поле. Благодаря этому появилась возможность исследовать поведение катодных лучей под воздействием и магнитного, и электрического поля.

Используя трубку новой конструкции, Томсон последовательно показал, что:

  • катодные лучи отклоняются в магнитном поле в отсутствие электрического;
  • катодные лучи отклоняются в электрическом поле в отсутствие магнитного;
  • при одновременном действии электрического и магнитного полей сбалансированной интенсивности, ориентированных в направлениях, вызывающих по отдельности отклонения в противоположные стороны, катодные лучи распространяются прямолинейно, то есть действие двух полей взаимно уравновешивается.

Томсон выяснил, что соотношение между электрическим и магнитным полями, при котором их действие уравновешивается, зависит от скорости, с которой движутся частицы. Проведя ряд измерений, Томсон смог определить скорость движения катодных лучей. Оказалось, что они движутся значительно медленнее скорости света, из чего следовало, что катодные лучи могут быть только частицами, поскольку любое электромагнитное излучение, включая сам свет, распространяется со скоростью света (см. Спектр электромагнитного излучения). Эти неизвестные частицы. Томсон назвал «корпускулами», но вскоре они стали называться «электронами».

Сразу же стало ясно, что электроны обязаны существовать в составе атомов - иначе, откуда бы они взялись? 30 апреля 1897 года - дата доклада Томсоном полученных им результатов на заседании Лондонского королевского общества - считается днем рождения электрона. И в этот день отошло в прошлое представление о «неделимости» атомов (см. Атомная теория строения вещества). Вкупе с последовавшим через десять с небольшим лет открытием атомного ядра (см. Опыт Резерфорда) открытие электрона заложило основу современной модели атома.

Описанные выше «катодные», а точнее, электронно-лучевые трубки стали простейшими предшественницами современных телевизионных кинескопов и компьютерных мониторов, в которых строго контролируемые количества электронов выбиваются с поверхности раскаленного катода, под воздействием переменных магнитных полей отклоняются под строго заданными углами и бомбардируют фосфоресцирующие ячейки экранов, образуя на них четкое изображение, возникающее в результате фотоэлектрического эффекта , открытие которого также было бы невозможным без нашего знания истинной природы катодных лучей.

1.1 Открытие электрона и радиоактивности.

Рождение представлений о сложном строении атома

Дискретность электрического тока отражена в работах Фарадея по электролизу - один и тот же ток приводит к выделению на электродах разного количества вещества в зависимости от того, какое вещество растворено. При выделении одного моля одновалентного вещества через электролит проходит заряд в 96 500 Кл, а при двухвалентном - заряд удваивается. После определения в конце XIX в. числа Авогадро появилась возможность оценить величину элементарного электрического заряда. Так как 6,02 10 23 атомов переносят заряд в 96 500 Кл, то на долю одного приходится 1,2-10 -19 Кл. Стало быть, это - мельчайшая порция электричества или «атома электричества». Георг Стоней предложил и назвать этот «атом электричества» электроном.

Работа с токами в газах осложнена трудностями получения разреженной газовой среды. Немецкий механик-стеклодув Г. Гейслер изготовлял для развлечений трубки с разреженным газом, светящимся при пропускании через него электрического тока. В них В. Гиттгофф обнаружил вызывающее флуоресценцию стенок трубки излучение из катода, которое назвали катодными лучами. Как установил английский физик У. Крукс, эти лучи распространялись по прямой, отклонялись магнитным полем и оказывали механическое воздействие.

Французский физик Ж. Перрен поместил внутри трубки перед катодом металлический цилиндр с отверстием против катода и обнаружил, что цилиндр заряжается отрицательно. Когда лучи отклонялись магнитным полем и не попадали в цилиндр, он оказывался незаряженным. Через два года Дж.Томсон поместил цилиндр не перед катодом, а сбоку: поднесенный магнит искривлял катодные лучи так, что они попадали в цилиндр и заряжали его отрицательно, но флуоресцирующее пятно на стекле смещалось. Значит, лучи - отрицательно заряженные частицы. Такой измерительный прибор называют электронно-лучевой трубкой высокого вакуума. Под действием силы Лоренца, вызванной магнитным полем, включенным в области конденсатора, светящийся след падения пучка на экране смещается. Так в 1895 г. родилась новая наука - электроника.

Действуя одновременно электрическим и магнитным полями и меняя их величину, Томсон подобрал их так, чтобы они компенсировались, катодные лучи не отклонялись, и пятно на стекле не смещалось. Он получил отношение электрического заряда к массе частицы е/т = 1,3 10 -7 Кл/г. Независимо от Томсона это значение измерил для катодных лучей В. Кауфман и получил близкое значение. Томсон назвал эту частицу корпускулой, а электроном - только ее заряд, но потом и саму частицу катодных лучей назвали электроном (от греч. elektron - янтарь).

Открытие электрона, изучение его уникальных свойств стимулировали исследования строения атома. Стали понятны процессы поглощения и испускания энергии веществом; сходства и отличия химических элементов, их химическая активность и инертность; внутренний смысл Периодической системы химических элементов Д. И. Менделеева, природа химической связи и механизмы химических реакций; появились совершенно новые приборы, в которых движение электронов играет определяющую роль. Изменялись взгляды на природу материи. С открытия электрона (1897) начался век атомной физики.

Из многочисленных опытов с пропусканием электронов через вещество Дж.Томсон заключил, что число электронов в атоме связано с величиной атомной массы. Но в нормальном состоянии атом должен быть электрически нейтрален, и поэтому в каждом атоме количества зарядов разных знаков равны. Поскольку масса электрона составляет примерно 1/2000 массы атома водорода, то масса положительного заряда должна быть в 2000 раз больше массы электрона. Например, у водорода почти вся масса связана с положительным зарядом. С открытием электрона сразу же появились новые проблемы. Атом нейтрален, значит, в нем должны быть другие частицы с положительным зарядом. Они еще не были открыты.

Французский физик А. Беккерель, исследуя люминесценцию, открыл (1896) явление радиоактивности. Его интересовала связь флуоресценции от катодных лучей на стенках трубки и рентгеновские лучи, испускаемые от этой части трубки. Облучая различные вещества, он пытался выяснить, могут ли рентгеновские лучи испускаться фосфоресцирующими телами, облученными солнечным светом. Вскоре им занялись супруги Кюри и открыли более активный элемент, который назвали полонием в честь Польши - родины Марии Кюри. Измеряя величину эффекта, Склодовская-Кюри открыла новый элемент - радий, а сам эффект излучения назвала радиоактивностью (от лат. radio - испускаю лучи). Интенсивность излучения радия в сотни тысяч раз больше, чем у урана. Затем был открыт третий радиоактивный элемент - актиний. И произошел некий «бум» в изучении радиоактивности.

К концу 1899 г. сотрудник Дж.Томсона Э. Резерфорд заключил: «...опыты показывают, что излучение урана является сложным и состоит по крайней мере из двух различных видов: одно, быстро поглощаемое, назовем его а-излучением; другое, более проникающее, назовем его

-излучением». Через три года П. Вийяр нашел еще одну компоненту излучения, которая не отклонялась магнитным полем, ее назвали -лучами. Радиоактивность быстро находила применение в естествознании и медицине.

Атом переставал считаться неделимым. Идея о строении всех атомов из атомов водорода была высказана еще в 1815 г. английским врачом У. Праутом. Сомнения о неделимости атомов породили открытие спектрального анализа и Периодической системы химических элементов. Получалось, что сам атом - это сложная структура с внутренними движениями составных частей, ответственных за характерные спектры. Стали появляться и модели его строения.

Модель атома - положительный заряд распределен в положительно заряженной достаточно большой области (возможно, сферической формы), а электроны вкраплены в него, как «изюм в пудинг» - в 1902 г. предложил Кельвин. Дж.Томсон развил его идею: атом - капля пудинга положительно заряженной материи, внутри которой распределены электроны, находящиеся в состоянии колебательного процесса. Из-за этих колебаний атомы и излучают электромагнитную энергию; так он смог объяснить дисперсию света, но возникло и много вопросов. Для объяснения Периодической системы химических элементов он исследовал разные конфигурации электронов, предполагая, что устойчивым конфигурациям соответствует устройство неактивных элементов типа благородных газов, а неустойчивым - более активных. По длинам волн испускаемого атомами света Томсон оценил область, занимаемую таким атомом, - около 10 -10 м. Он делал очень много предположений, увлекшись расчетом характеристик излучения по теории Максвелла, так как считал, что внутри атома действуют только электромагнитные силы. В 1903 г. Томсон получил, что электроны при движении должны излучать эллиптические волны, в 1904 г. - что при числе электронов более 8 они должны располагаться кольцами и число их в каждом кольце уменьшаться с уменьшением радиуса кольца. Число электронов не позволяет быть устойчивыми радиоактивным атомам, они выбрасывают а-частицы, и устанавливается новая структура атома. Эксперимент Э. Ре-зерфорда, одного из учеников Томсона, привел к ядерной модели строения атома.

Открытия конца XIX в. - рентгеновских лучей (1895), естественной радиоактивности (Беккерель, 1896), электрона (Дж.Томсон, 1897), радия (Пьер и Мария Кюри, 1898), квантового характера излучения (Планк, 1900) были началом революции в науке.

1.2 Планетарная модель строения атома. Современная наука и постулаты Бора

Планетарную модель строения атома первым предложил Ж. Перрен, пытаясь объяснить наблюдаемые свойства орбитальным движением электронов. Но В. Вин посчитал ее несостоятельной. Во-первых, электрон при вращении согласно классической электродинамике должен непрерывно излучать энергию и, в конце концов, упасть на ядро. Во-вторых, из-за непрерывной потери энергии излучение атома должно иметь непрерывный спектр, а наблюдается линейчатый спектр.

Опыты по прохождению а-частиц через тонкие пластинки из золота и других металлов провели сотрудники Э.Резерфорда Э.Марсден и Х.Гейгер (1908). Они обнаружили, что почти все частицы проходят через пластинку свободно, и только 1/10 000 из них испытывает сильное отклонение - до 150°. Модель Томсона это не могла объяснить, но Резерфорд, его бывший ассистент, сделал оценки доли отклонений и пришел к планетарной модели: положительный заряд сосредоточен в объеме порядка 10 - 15 со значительной массой.

Считая орбиты электронов в атоме закрепленными, Томсон в 1913 г. тоже пришел к планетарной модели строения атома. Но, решая задачу на устойчивость такого атома с использованием закона Кулона, он нашел устойчивую орбиту лишь для одного электрона. Ни Томсон, ни Резерфорд не могли объяснить испускание а-частиц при радиоактивном распаде - выходило, что в центре атома должны быть и электроны?! Его ассистент Г. Мозли измерил частоту спектральных линий ряда атомов Периодической системы и установил, что «атому присуща некая характерная величина, которая регулярно увеличивается при переходе от атома к атому. Это количество не может быть ни чем иным, как только зарядом внутреннего ядра».

Построение теории строения атома на основе планетарной модели наталкивалось на обилие противоречий.

Сначала датский физик Н. Бор пытался применить классическую механику и электродинамику к задаче о торможении заряженных частиц при движении через вещество, но при заданном значении энергии электрона появлялась возможность приписывать ему произвольные параметры орбиты (или частоты), что приводило к парадоксам.

Теорию строения атома Бор согласовал с проблемой происхождения спектров. Он дополнил модель Резерфорда постулатами, обеспечивающими устойчивость атома и линейчатый спектр его излучения. Бор отказался от представлений классической механики и обратился к квантовой гипотезе Планка: определенное соотношение между кинетической энергией в кольце и периодом обращения - это перенесение соотношения Е= hv , выражающего связь между энергией и частотой осциллятора, для системы, совершающей периодическое движение. Спектральные формулы Бальмера, Ридберга и Ритца позволили сформулировать требования обеспечения устойчивости атома и линейчатого характера спектра атома водорода: в атоме существует несколько стационарных состояний (или орбит электронов в планетарной модели), на которых атом не излучает энергии; при переходе электрона с одной стационарной орбиты на другую атом излучает или поглощает порцию энергии, пропорциональную частоте, согласующейся с правилом частот Ридберга- Ритца.



Загрузка...