caspian72.ru

Биологическая роль углеводов свойства сахарозы. Функции углеводов в организме

1. Углеводы выполняют структурную функцию, то есть участвуют в построении различных клеточных структур (например, клеточных стенок растений).
2. Углеводы выполняют защитную роль у растений (клеточные стенки, состоящие из клеточных стенок мертвых клеток защитные образования - шипы, колючки и др.).
3. Углеводы выполняют пластическую функцию - хранятся в виде запаса питательных веществ, а также входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК.
4. Углеводы являются основным энергетическим материалом. При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.
5. Углеводы участвуют в обеспечении осмотического давления и осморегуляции. Так, в крови содержится 100-110 мг/% глюкозы. От концентрации глюкозы зависит осмотическое давление крови.
6. Углеводы выполняют рецепторную функцию - многие олигосахариды входят в состав воспринимающей части клеточных рецепторов или молекул-лигандов.

Виды углеводов

Углеводы делятся на:

  • Простые углеводы или сахара: моно- и дисахариды
  • Сложные углеводы: олиго- и полисахариды
  • Неусваиваемые, или волокнистые, углеводы определяются как пищевая клетчатка

Сахара

Различают два вида сахаров: моносахариды и дисахариды. Моносахариды содержат одну сахарную группу, как, например, глюкоза, фруктоза или галактоза. Дисахариды образованы остатками двух моносахаридов и представлены, в частности, сахарозой (обычный столовый сахар) и лактозой.

Сложные углеводы

Полисахариды представляют собой углеводы, содержащие три и более молекул простых углеводов. К полисахаридам относятся, в частности, декстрины, крахмалы, гликогены и целлюлозы. Источниками полисахаридов являются крупы, бобовые, картофель и другие овощи.

Читайте подробнее: Виды углеводов - пищевые источники

Углеводы

Не следует путать с термином «углеводороды». У этого термина существуют и другие значения, см. Сахара (значения). Структурная формула лактозы - содержащегося в молоке дисахарида

Углево́ды - органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой C x (H 2 O) y , формально являясь соединениями углерода и воды.

Сахара́ - другое название низкомолекулярных углеводов: моносахаридов, дисахаридов и олигосахаридов.

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.

Углеводы - весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2-3 % массы животных.

Классификация

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы - дисахариды, от двух до десяти единиц - олигосахариды, а более десяти - полисахариды. Моносахариды быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.

Распространённый в природе моносахарид - бета-D-глюкоза. Основная статья: Моносахариды Дополнительные сведения: Альдегиды, Кетоны, и Многоатомные спирты

Моносахари́ды (от греческого monos - единственный, sacchar - сахар) - простейшие углеводы, не гидролизующиеся с образованием более простых углеводов - обычно представляют собой бесцветные, легко растворимые в воде, плохо - в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения, одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза . При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза . В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы , тетрозы , пентозы , гексозы , гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы. Моносахариды - стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (C 6 H 12 O 6) - структурная единица многих дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов.

Дисахариды

Мальтоза (солодовый сахар) - природный дисахарид, состоящий из двух остатков глюкозы Основная статья: Дисахариды

Дисахари́ды (от di - два, sacchar - сахар) - сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединены друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных.

Олигосахариды

Рафиноза - природный трисахарид, состоящий из остатков D-галактозы, D-глюкозы и D-фруктозы. Основная статья: Олигосахариды

О́лигосахари́ды (от греч. ὀλίγος - немногий) - углеводы, молекулы которых синтезированы из 2-10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных - гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза - невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы - в больших количествах содержится в сахарной свёкле и во многих других растениях.

Полисахариды

Слева - крахмал, справа - гликоген.
Основная статья: Полисахариды См. также: Крахмал, Гликоген, Целлюлоза и Хитин

Полисахари́ды - общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров - моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков.

Гомополисахариды (гликаны ), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны ) происхождения.

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л (C 6 H 10 O 5) n - смесь двух гомополисахаридов: линейного - амилозы и разветвлённого - амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде. Молекулярная масса 105-107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10-30 %, амилопектина - 70-90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20-30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации - декстрины (C 6 H 10 O 5) p , а при полном гидролизе - глюкоза.

Структура гликогена

Гликоге́н (C 6 H 10 O 5) n - полисахарид, построенный из остатков альфа-D-глюкозы - главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105-108 Дальтон и выше. В организмах животных является структурным и функциональным аналогом полисахарида растений - крахмала . Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован - сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100-120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) - наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном - D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу.

Хити́н - структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих - насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозидными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой.

Пекти́новые вещества́ - полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот способны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид».

Мурами́н (лат. múrus - стенка) - полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе.

Декстра́ны - полисахариды бактериального происхождения - синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие).

Пространственная изомерия

Слева D-глицеральдегид, справа L-глицеральдегид.
Основная статья: Изомерия

Изомерия (от др.-греч. ἴσος - равный, и μέρος - доля, часть) - существование химических соединений (изомеров ), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.

Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение - L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН 2 ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы - глюкоза, фруктоза, манноза и галактоза - по стереохимической конфигурациям относят к соединениям D-ряда.

Биологическая роль

В живых организмах углеводы выполняют следующие функции:

  1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих.
  2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
  3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК).
  4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.
  5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин - у растений.
  6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100-110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
  7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

Биосинтез

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

C x (H 2 O) y + x O 2 → x C O 2 + y H 2 O , Δ H 0.001 {\displaystyle {\mathsf {C_{x}(H_{2}O)_{y}+xO_{2}\rightarrow xCO_{2}+yH_{2}O,\ \Delta H

Обмен

Основная статья: Углеводный обмен

Обмен углеводов в организме человека и высших животных складывается из нескольких процессов:

  1. Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
  2. Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
  3. Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл ) и анаэробный (без потребления кислорода) гликолиз - пути расщепления глюкозы в организме.
  4. Взаимопревращение гексоз.
  5. Аэробное окисление продукта гликолиза - пирувата (завершающая стадия углеводного обмена).
  6. Глюконеогенез - синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).

Важнейшие источники

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70-80 % глюкозы и фруктозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Список наиболее распространенных углеводов

  • Моносахариды
    • глюкоза
    • фруктоза
    • галактоза
    • манноза
  • Олигосахариды
    • Дисахариды
      • сахароза (обычный сахар, тростниковый или свекловичный)
      • мальтоза
      • изомальтоза
      • лактоза
      • лактулоза
  • Полисахариды
    • декстрин
    • гликоген
    • крахмал
    • целлюлоза
    • галактоманнаны
    • глюкоманнан
  • Гликозаминогликаны (Мукополисахариды)
    • гепарин
    • хондроитин-сульфат
    • гиалуроновая кислота
    • гепаран-сульфат
    • дерматан-сульфат
    • кератан-сульфат

Свойства углеводов. Функции и свойства углеводов: таблица

В живой природе широко распространены многие вещества, значение которых сложно переоценить. К примеру, к таковым относятся углеводы. Они чрезвычайно важны в качестве источника энергии для животных и человека, а некоторые свойства углеводов делают их незаменимым сырьем для промышленности.

Что это такое?

Это все вещества, строение которых может быть описано формулой Cn(Н 2 О)m. Они имеют огромное биологическое значение, играют важнейшую роль в жизни многих живых существ.

Название этой группы ученые придумали после того, как был произведен первичный анализ веществ, которые в нее входят. Тогда было выяснено, что основными их компонентами являются углерод и вода. Позднее выяснилось, что название получилось на редкость точным, так как свойства углеводов таковы, что соотношение атомов водорода и кислорода в них полностью идентично таковому в воде. Проще говоря, на два атома водорода приходится один кислород. Впервые русский вариант названия был предложен в 1844 году профессором К. Шмидтом.

Некоторые дополнения

Если немного видоизменить приведенную выше формулу, вынеся «n» за скобки, то выражение станет несколько иным: См(Н 2 О)n. Пожалуй, именно оно как нельзя лучше отражает саму суть названия «угле - воды».

На сегодняшний день ученые точно установили, что существует ряд веществ, которые имеют свойства углеводов, но не совсем соответствуют описанной нами формуле. А потому в зарубежной литературе нередко можно наткнуться на слово «глициды», которое является современным синонимом термина 1844 года, который оказался не совсем точен.

Простая классификация

Весь огромный класс веществ можно поделить на две большие группы: простые и сложные глициды. Каковы же свойства углеводов, которые в них входят? Собственно, они также не отличаются большой сложностью:

  • Простыми называются те вещества из группы, которые не поддаются гидролизу с последующим образованием других углеводов. Но главное отличие в том, что число атомов кислорода в их структуре равно аналогичному количеству атомов углерода. Называются моносахаридами.
  • Соответственно, под определение «сложных» попадают все те глициды, которые при гидролизе распадаются с образованием нескольких простых углеводов. Разумеется, у них соотношение атомов кислорода и углерода различно. Называются дисахаридами. Очень большую роль в природе играют именно сложные углеводы, список которых мы частично приводим в статье.

Кроме того, имеется и другая классификация, по которой углеводы делятся на три типа. Вот они:

  • Моносахариды.
  • Олигосахариды.
  • Полисахариды.

Приведенная ниже таблица углеводов наверняка поможет вам разобраться с их важнейшими различиями.

Конечно, нами была приведена краткая таблица углеводов, но в ее рамки попросту невозможно уместить все специфические особенности, которые свойственны некоторым представителям этого обширного класса. А потому разберем основные группы каждую отдельно, подробнее остановившись на свойствах некоторых отдельных, наиболее распространенных веществ. Итак, какие бывают классы углеводов?

Моносахариды

Следует помнить, что все они относятся к категории твердых веществ, легко способны переходить в кристаллическое состояние. Они чрезвычайно гигроскопичны, отлично растворяются в воде, образуя сироп. Выделить их в виде кристаллов оттуда бывает очень сложно. Растворы их обладают нейтральной реакцией, чаще всего сладковаты на вкус. Интенсивность вкуса различна: так, фруктоза приблизительно в 3-3,5 раза слаще наиболее часто встречаемой глюкозы.

О структурной форме

Все эти вещества – соединения бифункциональной структуры, в состав которых обязательно входит углеродный скелет, одна карбонильная группа и несколько гидроксильных. Если в роли карбонильной группы выступает альдегидная группа, вещество называется альдозой. Соответственно, в случае наличия кетонного «хвоста» их называют кетозами.

Так как в природе эти вещества распространены чрезвычайно, их можно встретить как в их свободном состоянии, так и в виде ангидридных форм. Вообще, практически все сложные углеводы в той или иной степени являются ангидридами простых сахаров, которые довольно просто получаются при отнятии нескольких (или одной) молекул воды (приставка «ан» - отсутствие).

Глюкоза как наиболее типичный представитель

Формула этого наиболее типичного представителя своей группы - С 6 Н 12 О 6 . Очень часто встречаются эти углеводы в клетке растений. Имеет не только широкую распространенность, но и весьма важное значение для организма, так как является основным источником энергии для него (речь о животных и человеке, конечно же). В принципе, таковы общие свойства белков, углеводов и жиров для всех животных организмов. Кроме того, широко используется в медицине, ветеринарии, промышленности (в том числе и пищевой).

Физические свойства

Каковы общие физические свойства углеводов этой группы? Внешний вид – мелкие кристаллы белого цвета, на вкус сладковаты, в воде растворяются хорошо. Растворяемость резко повышается, если раствор подогревать: таким способом получают сироп глюкозы.

Краткие сведения о химическом строении

Если посмотреть на линейную формулу, то в составе этого углевода хорошо заметна одна альдегидная и пять гидроксильных групп. Когда вещество находится в кристаллическом состоянии, то молекулы его могут находиться в одной из двух возможных форм (α- или β-глюкоза). Дело в том, что гидроксильная группа, сцепленная с пятым атомом углерода, может вступать во взаимодействие с карбонильным остатком.

Распространенность в природных условиях

Так как ее исключительно много в виноградном соке, глюкозу нередко называют «виноградным сахаром». Под таким именем ее знали еще наши далекие предки. Впрочем, отыскать ее можно в любом другом сладком овоще или фрукте, в мягких тканях растения. В животном мире ее распространенность ничуть не ниже: приблизительно 0,1% нашей крови – это именно глюкоза. Кроме того, найти можно эти углеводы в клетке практически любого внутреннего органа. Но особенно их много в печени, так как именно там осуществляется переработка глюкозы в гликоген.

Она (как мы уже и говорили) является ценным источником энергии для нашего организма, входит в состав практически всех сложных углеводов. Как и прочие простые углеводы, в природе она возникает после реакции фотосинтеза, которая протекает исключительно в клетках растительных организмов:

6СО 2 + 6Н 2 О хлорофилл С 6 Н 12 О 6 + 6О 2 - Q

Растения при этом выполняют невероятно важную для биосферы функцию, аккумулируя энергию, которая получается ими от солнца. Что касается промышленных условий, то виноградный сахар издревле получали из крахмала, производя его гидролиз, причем катализатором реакции является концентрированная серная кислота:

(С 6 Н 10 О 5)n + nH 2 О H 2 SO 4 , t nC 6 H 12 О 6

Химические свойства

Каковы химические свойства углеводов этого вида? Обладают все теми же характеристиками, которые свойственны сугубо спиртам и альдегидам. Кроме того, имеются у них и некоторые специфические особенности. Впервые синтез простых углеводов (в том числе и глюкозы) был произведен талантливейшим химиком А. М. Бутлеровым в 1861 году, причем в качестве сырья он использовал формальдегид, расщепляя его в присутствии гидроксида кальция. Вот формула этого процесса:

6НСОН ------->С6Н 12 О 6

А сейчас рассмотрим некоторые свойства двух других представителей группы, природное значение которых не менее велико, а потому их изучает биология. Углеводы этих видов играют в нашей повседневной жизни весьма важную роль.

Фруктоза

Формула этого глюкозного изомера - СеН 12 О б. Наподобие «прародителя» может существовать в линейной и циклической форме. Вступает во все реакции, которые характерны для многоатомных спиртов, но, тем самым отличаясь от глюкозы, никак не взаимодействует с аммиачным раствором оксида серебра.

Рибоза

Чрезвычайно большой интерес представляет рибоза и дезоксирибоза. Если вы хоть немного помните программу биологии, то и сами прекрасно знаете о том, что именно эти углеводы в организме входят в состав ДНК и РНК, без которых само существование жизни на планете невозможно. Название «дезоксирибоза» означает, что в ее молекуле на один атом кислорода меньше (если ее сравнивать с обычной рибозой). Будучи сходными в этом отношении с глюкозой, также могут иметь линейное и циклическое строение.

Дисахариды

В принципе, эти вещества по своему строению и функциям во многом повторяют предыдущий класс, а потому нет смысла останавливаться на этом более подробно. Каковы химические свойства углеводов, относящихся к этой группе? Важнейшими представителями семейства являются сахароза, мальтоза и лактоза. Все они могут быть описаны формулой С 12 Н 22 О 11 , так как являются изомерами, но это не отменяет огромных различий в их строении. Так чем характерны сложные углеводы, список и описание которых вы можете увидеть ниже?

Сахароза

Ее молекула имеет в своем составе сразу два цикла: один из них является шестичленным (остаток α-глюкозы), а другой - пятичленный (остаток β-фруктозы). Соединяется все эта конструкция за счет гликозидного гидроксила глюкозы.

Получение и общее значение

Согласно сохранившимся историческим сведениям, еще за три века до Рождества Христова сахар из сахарного тростника научились получать в Древней Индии. Только в середине 19-го века оказалось, что куда больше сахарозы с меньшими для этого усилиями можно добыть из сахарной свеклы. В некоторых ее сортах содержится до 22% этого углевода, тогда как в тростнике содержание может быть в пределах 26%, но такое возможно только при идеальных условиях выращивания и благоприятном климате.

Мы уже говорили, что углеводы хорошо растворяются в воде. Именно на этом принципе основано получение сахарозы, когда для этой цели используют аппараты-диффузоры. Чтобы осадить возможные примеси, раствор фильтруют через фильтры, в состав которых входит известь. Чтобы удалить из полученного раствора гидроксид кальция, через него пропускают обычный углекислый газ. Осадок отфильтровывают, а сахарный сироп упаривают в специальных печах, получая на выходе уже знакомый нам сахар.

Лактоза

Этот углевод в промышленных условиях выделяется из обычного молока, в котором в избытке содержатся жиры и углеводы. В нем этого вещества содержится довольно много: так, коровье молоко содержит приблизительно 4-5,5% лактозы, а в молоке женщин ее объемная доля доходит до 5,5-8,4%.

Каждая молекула этого глицида состоит из остатков 3-галактозы и а-глюкозы в пиранозной форме, которые образуют связи посредством первого и четвертого атома углерода.

В отличие от других сахаров, у лактозы есть одно исключительное свойство. Речь идет о полном отсутствии гигроскопичности, так что даже во влажном помещении этот глицид совершенно не отсыревает. Это свойство активно используется в фармацевтике: если в состав какого-то лекарства в порошкообразной форме входит обычная сахароза, то к ней обязательно добавляют лактозу. Она совершенно натуральная и безвредна для человеческого организма, в отличие от многих искусственных добавках, которые препятствуют слеживанию и намоканию. Каковы функции и свойства углеводов этого типа?

Биологическое значение лактозы чрезвычайно велико, так как лактоза является важнейшим питательным компонентом молока всех животных и человека. Что же касается мальтозы, то ее свойства несколько отличны.

Мальтоза

Является промежуточным продуктом, который получается при гидролизе крахмала. Название «мальтоза» получил из-за того что образуется во многом под влиянием солода (по-латински солод - maltum). Широко распространен не только в растительных, но и в животных организмах. В больших количествах образуется в пищеварительном тракте жвачных животных.

Химическое строение и свойства

Молекула этого углевода состоит из двух частей α-глюкозы в пиранозной форме, которые соединены между собой посредством первого и четвертого атомов углерода. На вид представляет собой бесцветные, белые кристаллы. На вкус – сладковатая, прекрасно растворяется в воде.

Полисахариды

Следует помнить, что все полисахариды можно рассматривать с той точки зрения, что они представляют собой продукты поликонденсации моносахаридов. Их общая химическая формула - (С б Н 10 О 5)п. В рамках данной статьи мы рассмотрим крахмал, так как он является наиболее типичным представителем семейства.

Крахмал

Образуется в результате фотосинтеза, в больших количествах откладывается в корнях и семенах растительных организмов. Каковы физические свойства углеводов этого вида? На вид представляет собой белый порошок с плохо выраженной кристалличностью, нерастворимый в холодной воде. В горячей жидкости образует коллоидную структуру (клейстер, кисель). В пищеварительном тракте животных имеется много ферментов, которые способствуют его гидролизу с образованием глюкозы.

Является наиболее распространенным природным полимером, который образован из множества остатков а-глюкозы. В природе одновременно встречаются две его формы: амилоза и амшопектин. Амилоза, будучи линейным полимером, может быть растворена в воде. Молекула состоит из остатков альфа-глюкозы, которые связаны через первый и четвертый атом углерода.

Нужно помнить, что именно крахмал является первым видимым продуктом фотосинтеза растений. В пшенице и других злаковых его содержится до 60-80%, тогда как в клубнях картофеля – всего 15-20%. К слову говоря, по виду крахмальных зерен под микроскопом можно безошибочно определить видовую принадлежность растения, так как они у всех разные.

Если углевод быстро нагреть, его огромная молекула будет быстро разлагаться с образованием мелких полисахаридов, которые известны под названием декстринов. У них с крахмалом одна общая химическая формула (С 6 Н 12 О 5)х, но имеется разница в значении переменной «х», которое меньше значения «n» в крахмале.

Напоследок приведем таблицу, в которой отражены не только основные классы углеводов, но и их свойства.

Основные группы

Особенности молекулярного строения

Отличительные свойства углеводов

Моносахариды

Различаются по числу атомов углерода:

  • Триозы (С3)
  • Тетрозы (С4)
  • Пентозы (С5)
  • Гексозы (С6)

Бесцветные или белые кристаллы, отлично растворяются в воде, сладкие на вкус

Олигосахариды

Сложное строение. В зависимости от вида, содержат 2-10 остатков простых моносахаридов

Внешний вид тот же, чуть хуже растворяются в воде, менее сладкий вкус

Полисахариды

Состоят из очень большого количества остатков моносахаридов

Белый порошок, кристаллическая структура выражена слабо, в воде не растворяются, но имеют свойство в ней разбухать. На вкус нейтральные

Вот каковы функции и свойства углеводов основных классов.

2 Физиологическое значение углеводов.

Углеводы являются главным источником энергии для человеческого организма, необходимой для жизнедеятельности всех клеток, тканей и органов, особенно мозга, сердца, мышц. В результате биологического окисления углеводов (а также жиров и, в меньшей степени, белков) в организме освобождается энергия 16,7 кДж (4 ккал) из 1 г углеводов или белков, 37,76 кДж (9 ккал) из 1 г жиров.

Кроме того в организме углеводы и их производные входят в состав соединительной ткани; противодействуют накоплению кетоновых тел при окислении жиров; предотвращают свертывание крови в сосудах, препятствуют проникновению бактерий через клеточную оболочку и др.

Углеводные запасы человека очень ограничены, содержание их не превышает 1% массы тела. При интенсивной работе они быстро истощаются, поэтому углеводы должны поступать с пищей ежедневно. Суточная потребность человека в углеводах составляет 400-500 г, при этом примерно 80% приходится на крахмал.

С точки зрения пищевой ценности углеводы подразделяются на усваиваемые и неусваиваемые. Усваиваемые углеводы – моно- и олигосахариды, крахмал, гликоген. Неусваиваемые – целлюлоза, гемицеллюлозы, инулин, пектин, гумми, слизи.

Все усваиваемые углеводы расщепляются в желудочно-кишечном тракте до моносахаридов, а моносахариды далее всасываются из кишечника в кровь.

Неусваиваемые углеводы человеческим организмом не утилизируются, но они чрезвычайно важны для пищеварения и составляют так называемые пищевые волокна. Пищевые волокна выполняют следующие функции в организме человека:

    играют положительную роль в нормализации состава микрофлоры кишечника, в ингибировании гнилостных процессов;

    оказывают влияние на липидный обмен, нарушение которого приводит к ожирению;

    адсорбируют желчные кислоты.

3 Функции моносахаридов и олигосахаридов в пищевых продуктах.

Как и для белков у углеводов главной функциональной особенностью является гидрофильность. Гидрофильность углеовдов обусловлена наличием многочисленных ОН-групп, которые взаимодействуют с молекулами воды, что приводит к растворению углеводов.

Эффект связывания воды в значительной степени зависит от структуры углевода. Так, например, фруктоза значительно более гигроскопична, чем глюкоза, хотя они имеют и одинаковое число гидроксильных групп. А сахароза гораздо более гигроскопична чем лактоза или мальтоза. Различная водосвязывающая способность углеводов позволяет их целенаправленно использовать в различных технологиях.

Например, замороженные пекарские изделия не должны содержать больших количеств абсорбированной влаги, поэтому в этих изделиях целесообразно использовать лактозу или мальтозу. В других случаях, когда нежелательна потеря влаги в продуктах при хранении желательно использовать гигроскопичные сахара, например, фруктозные сиропы.

Углеводы могут связывать летучие ароматические вещества и способствуют сохранению цвета продуктов, что особенно важно в процессах сушки. Способность к связыванию ароматических веществ у олигосахаридов (циклодекстрины, гуммиарабик) выражена в большей степени, чем у моносахаридов.

Под действием высоких температур углеводы в пищевых продуктах участвуют в реакциях образования коричневых веществ – это реакции карамелизации и меланоидинообразования. При этом образуются и ароматические вещества, имитирующие карамельный аромат, аромат ржаного хлеба, шоколада, запах картофеля или жареного мяса. Протекание подобных реакций необходимо учитывать, так как они могут быть и нежелательными.

Важной функцией низкомолекулярных углеводов в пищевых продуктах является их сладость. Если принять сладость сахарозы за 100ед., то сладость глюкозы составит 74ед., фруктозы – 180ед., лактозы – 32ед., а у заменителей сахара аспартам – 180ед, сахарин – 500ед.

5.Классификация углеводов

По способности к гидролизу углеводы делятся на простые - моносахариды и сложные - полисахариды,дисахариды(олиго.,три.)

Моносахариды (простые сахара) – углеводы, которые не способны гидролизироваться до более простых соединений.

Олигосахариды (низкомолекулярные сахара) – углеводы, которые при гидролизе распадаются на 2-8 моносахаридов.

Полисахариды (сложные сахара)- продукты конденсации моносахаридов, они способны гдиролизоваться с образованием простых углеводов (от десятков до сотен тысяч молекул моносахаридов)

СТРОЕНИЕ УГЛЕВОДОВ

Термин "углеводы", предложенный в XIX столетии, был основан на предположении, что все углеводы содержат 2 компонента - углерод и воду, и их элементарный состав можно выразить общей формулой C m (H 2 O) n . Хотя из этого правила есть исключения и оно не абсолютно точно, тем не менее указанное определение позволяет наиболее просто характеризовать класс углеводов в целом. К тому же попытка, предпринятая Комиссией по химической номенклатуре, заменить термин "углеводы" на "глициды" не удалась. Новый термин не получил широкого признания. Термин "углеводы" укоренился и общепризнан.

Углеводы можно разделить на 3 основные группы в зависимости от количества составляющих их мономеров: моносахариды, олигосахариды и полисахариды.

6. Физико-химические свойства углеводов

Физические свойства

Моносахариды – твердые вещества, легко растворимые в воде, плохо – в спирте и совсем нерастворимые в эфире. Водные растворы имеют нейтральную реакцию на лакмус. Большинство моносахаридов обладают сладким вкусом, однако меньшим, чем свекловичный сахар.

Химические свойства

Моносахариды проявляют свойства спиртов и карбонильных соединений.

7.Принцепы классификации производных углеводов: гликопротеиды, гликолипиды, протеогликаны и др. Биологическая роль данных соединений..(ты взяла его)

8.Углеводы как составные элементы нуклеиновых кислот, коферментов, витаминов.

Нуклеиновые кислоты – это небелковый компонент нуклеопротеи-

нов. В настоящее время их рассматривают как надмолекулярные комплексы

и по наличию небелкового компонента выделяют дезоксирибонуклеопро-

теины (ДРНП) и рибонуклеопротеины (РНП).

Состав нуклеиновых кислот

Состав нуклеиновых кислот был изучен еще в конце XIX века с помо-

щью простых методов: гидролиза и качественных реакций на структурные

компоненты. Так было выяснено, что в составе нуклеиновых кислот есть

углеводы, азотсодержащие соединения и фосфорная кислота.

Углеводы представлены пентозами, рибозой и дезоксирибозой (рис.

5.2), которые обнаружены соответственно в РНК и ДНК. .

КОФЕРМEНТЫ (от лат. со- - приставка, означающая совместность, и ферменты) (коэнзимы), орг. прир. соед., необходимые для осуществления каталитич. действия ферментов. Эти в-ва, в отличие от белкового компонента фермента (апофермента), имеют сравнительно небольшую мол. массу и, как правило, термостабильны. Иногда под коферментами подразумевают любые низкомол. в-ва, участие к-рых необходимо для проявления каталитич. действия фермента, в т. ч. и ионы, напр. К+, Mg2+ и Мn2+ .

Витамины - (от лат. vita - жизнь), низкомолекулярные органические соединения различной химической природы, необходимые в незначительных количествах для нормального обмена веществ и жизнедеятельности живых организмов. Многие витамины - предшественники коферментов, в составе которых участвуют в различных ферментативных реакциях. 10.биологические функции и особенности строения аминокислот

Аминокисло́ты (аминокарбо́новые кисло́ты ) - органические соединения , в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Аминокислоты - бесцветные кристаллические соединения, в большинстве случаев хорошо растворимые в воде. В структуре их находятся две функциональные группировки атомов: аминная NH 2 и карбоксильная СООН.

Особенности строения аминокислот заключаются в изомерии, которая может быть обусловлена также разветвлением углеродного скелета, а также строением своей углеродной цепи.

Биологические функции аминoкислoт

1. Стpуктуpные элeменты пeптидов и белков. В состав белков входят 20 протеиногенных аминокислот , которые кодиpyютcя генетичеcким кодом и постоянно oбнapyживaютcя в белкax. Некоторые из них пoдвеpгaютcя посттрансляционной модификации , т.е. мoгyт быть фocфopилиpовaны, aцилиpoваны или гидpoксилирoваны.

2. Структурные элeмeнты дpyгих природных соeдинeний. Аминoкиcлoты и их производные входят в cocтaв коферментов ,желчных кислот ,антибиотиков .

3. Пepeнoсчики сигналов. Некоторые из aминoкиcлoт являются нейромедиаторами или предшественниками нейромедиаторов , медиаторов или гормонов .

4. Метаболиты. Аминoкиcлоты - важнейшие, а некоторые из них жизненно важные компоненты питания .Некоторые aминoкиcлoты принимают участие в обмене веществ , нaпpимep, cлyжaт донорами азота. Непротеиногенные aминoкиcлoты oбpaзyютcя в качестве прoмeжyточныx продуктов при биоcинтeзе и деградации протеиногенных аминокислот или в цикле мочевины.

Углеводы составляют незначительную часть общего сухого веса тканей человеческого организма - не более 2%, в то время как на белки, например, приходится до 45% сухой массы тела. Тем не ме­нее, углеводы выполняют в организме целый ряд жизненно важных функции, принимая участие в структурной и метаболической органи­зации органов и тканей.

С химической точки зрения углеводы представляют собой много­атомные альдегидо- или кетоноспирты или их полимеры, причем моно­мерные единицы в полимерах соединены между собой гликозидными связями.

Классификация углеводов.

Углеводы делятся на три больших группы: моносахариды и их производные, олигосахариды и полисахариды.

Моносахариды в свою очередь делятся, во первых, по характеру карбонильной группы на альдозы и кетозы и, во-вто­рых,по числу атомов углерода в молекуле на триозы, тетрозы, пен­тозы и т.д. Обычно моносахариды имеют тривиальные названия: глю­коза, галактоза, рибоза, ксилоза и др. К этой же группе соедине­ний относятся различные производные моносахаридов, важнейшими из них являются фосфорные эфиры моносахаридов [ глюкозо-6-фосфат, фруктозо-1,6-бисфосфат, рибозо-5-фосфат и др.], уроновые кислоты

[галактуроновая, глюкуроновая, идуроновая и др.], аминосахара

[глюкозамин, галактозамин и др.], сульфатированные производные

уроновых кислот, ацетилированные производные аминосахаров и др.Об­щее количество мономеров и их производных составляет несколько де­сятков соединений, что не уступает имеющемуся в организме коли­честву индивидуальных аминокислот.

Олигосахариды, представляющие собой полимеры, мономерными единицами которых являются моносахариды или их произ­водные. Число отдельных мономерных блоков в полимере может дости­гать полутора или двух / не более / десятков. Все мономерные еди­ницы в полимере связаны гликозидными связями. Олигосахариды в свою очередь делятся на гомоолигосахариды, состоящие из одинако-

вых мономерных блоков [ мальтоза ] , и гетероолигосахариды - в их

состав входят различные мономерные единицы [ лактоза ]. В боль­шинстве своем олигосахариды встречаются в организме в качестве структурных компонентов более сложных молекул - гликолипидов или гликопротеидов. В свободном виде в организме человека могут быть обнаружены мальтоза, причем мальтоза является промежуточным про­дуктом расщепления гликогена, и лактоза, входящая в качестве ре­зервного углевода в молоко кормящих женщин. Основную массу олиго­сахаридов в организме человека составляют гетероолигосахариды гликолипидов и гликопротеидов. Они имеют чрезвычайно разнообраз­ную структуру, обусловленную как разнообразием входящих в них мо­номерных единиц, так и разнообразием вариантов гликозидных связей между мономерами в олигомере .

Полисахариды, представляющие собой полимеры, построенные из моносахаридов или их производных, соединенных меж-

ду собой гликозидными связями, с числом мономерных единиц от нес­кольких десятков до нескольких десятков тысяч. Эти полисахариды могут состоять из одинаковых мономерных единиц, т.е. являться го­мополисахаридами, или же в их состав могут входить различные мо­номерные единицы - тогда мы имеем дело с гетерополисахаридами. Единственным гомополисахаридом в организме человека является гли­коген, состоящий из остатков a-D - глюкозы. Более разнообразен на-

бор гетерополисахаридов - в организме присутствуют гиалуроновая кислота, хондроитинсульфаты, кератансульфат, дерматансульфат, ге­парансульфат и гепарин. Каждый из перечисленных гетерополисахари­дов состоит из индивидуального набора мономерных единиц.Так основ-

ными мономерными единицами гиалуроновой кислоты являются глюку­роновая кислота и N-ацетилглюкозамин,тогда как в состав гепарина входят сульфатированный глюкозамин и сульфатированная идуроновая кислота.

Углеводы , или сахара , - одна из главных групп органических веществ в живых организмах. Они являются первичными продуктами фотосинтеза и исходными продуктами биосинтеза других веществ (органических кислот, аминокислот) у растений. Содержатся углеводы и в клетках других организмов.

Пример 1

В животных клетках содержится 1 – 2% углеводов от массы сухого вещества, а в растительных оно достигает 85 – 90%.

Строение углеводов

Углеводы состоят из углеводорода, кислорода и водорода, причём у большинства углеводов соотношение водорода и кислорода такое же, как и в молекуле воды (отсюда их название - углеводы).

В зависимости от строения углеводы делят на моносахариды и полисахариды (простые и сложные).

В зависимости от количества атомов углеводорода есть такие моносахариды: триозы (3С – три атома углерода в цепи), тетрозы (4С), пентозы, гексозы, гептозы.

Моносахариды , которые имеют пять и больше атомов углеводорода, при растворении в воде, иногда приобретают кольцевую структуру.

В естественных условиях наиболее часто встречаются пентозы (рибоза, дезоксирибоза, рибулёза) и гексозы (глюкоза, фруктоза, галактоза).

Замечание 2

Рибоза и дезоксирибоза являются составными частями АТФ и нуклеиновых кислот. Глюкоза является универсальным источником энергии.

Благодаря превращениям моносахаридов клетки не только обеспечиваются энергией, но и осуществляется биосинтез многих органических веществ, а также они способствуют обезвреживанию и выведению из организма ядовитых веществ, попадающих снаружи или тех, которые образовались в процессе метаболизма (обмена веществ), например, в процессе распада белков.

Дисахариды и полисахариды образуются в результате соединения двух и более моносахаридов, таких, как глюкоза, ксилоза, галактоза, арабиноза или маноза.

Пример 2

При соединении двух молекул моносахаридов образуется молекула дисахарида и выделяется вода. Типичные представители этой группы: сахароза (тростниковый сахар), лактоза (молочный сахар). мальтоза (солодовый сахар),

По своим свойствам дисахариды близки к моносахаридам.

Моно- и дисахариды хорошо растворимы в воде и сладкие на вкус. С увеличением количества мономеров растворимость полисахаридов уменьшается, исчезает сладкий вкус. К полисахаридам относятся крахмал, целлюлоза, инулин, гликоген, хитин.

Полисахариды (гликоген, целлюлоза и крахмал) построены из глюкозных мономеров, но связи в их молекулах разные. Кроме того, отличается и характер ветвления полимерных цепей: у целлюлозы цепи не ветвятся, у гликогена они ветвятся сильнее, чем у крахмала.

Значение углеводов

Замечание 3

Основное значение углеводов связано с их энергетической функцией.

В результате их ферментативного расщепления и окисления освобождается энергия, которую впоследствии использует клетка.

Полисахариды играют роль запасных продуктов и источников энергии (крахмал, гликоген), которые легко мобилизируются, а также используются как строительный материал (целлюлоза, хитин).

Полисахариды – удобные запасные вещества по ряду причин:

  • благодаря нерастворимости в воде они не действуют на клетку ни осмотически, ни химически, что достаточно важно, поскольку они могут долго храниться в живой клетке;
  • находясь в твёрдом обезвоженном состоянии полисахариды увеличивают полезную массу запасных веществ за счёт экономии их объёма.

При этом вероятность употребления этих продуктов различными микроорганизмами (и болезнетворными), грибами, которые, как известно, не способны заглатывать пищу, а всасывают питательные вещества всей поверхностью тела, существенно уменьшается. В конце концов в случае необходимости запасные полисахариды легко превращаются путём гидролиза на простые сахара.

Углеводы выполняют в клетке ряд функций. Полисахариды накопляются как запасные питательные вещества (гликоген – в клетках печени и мышцах, крахмал – в клубнях и корневищах растений);

Энергетическая функция связана с освобождением энергии при окислении молекул углеводов (при окислении 1 г углеводов освобождается 17,6 кДж энергии);

Структурная функция связана с наличием в растительных клетках целлюлозной оболочки, которая выполняет роль внешнего скелета. Углеводы входят в состав гликокаликса животных клеток.

Целлюлоза и хитин

Целлюлоза является одним из важнейших структурных компонентов клеточных стенок некоторых протистов, грибов, растений и составляет в среднем 26 – 40% материала клеточной стенки, а волокно хлопчатника состоит из целлюлозы почти полностью. Целлюлоза является пищей для многих бактерий, животных и грибов. Однако у большинства животных, а также у человека в желудочно-кишечном тракте нет фермента целлюлазы, который расщепляет целлюлозу до глюкозы, и они не могут усваивать целлюлозу. Однако целлюлозные волокна всё же играют важную роль в питании, придавая пище объём и грубую консистенцию, которые стимулируют перистальтику кишечника. У жвачных животных в кишечнике целлюлозу перерабатывают бактерии и простейшие.

Хитин входит в состав клеточных стенок некоторых протистов и грибов, выполняя опорную функцию, а у некоторых животных (особенно у членистоногих) является важным компонентом их внешнего скелета.

Углеводы (сахара) - группа природных полигидроксикарбонильных соединений, входящих в состав всех живых организмов. Термин "углеводы" возник потому, что первые известные представители углеводов по составу отвечали формуле C x (H 2 O) y (углерод+вода); впоследствии были обнаружены природные углеводы с другим элементным составом.

Виды углеводов

Углеводы делят на моносахариды, олигосахариды и полисахариды.

Моносахариды представляют собой полигидроксиальдегиды (альдозы) или полигидроксикетоны (кетозы) с линейной цепью из 3-9 атомов углерода, каждый из которых (кроме карбонильного) связан с гидроксильной группой. Моносахариды содержат асимметрические атомы углерода и существуют в виде оптических изомеров D- и L-ряда. В природе распространены D-глюкоза, D-галактоза, D-манноза, D-фруктоза, D-ксилоза, L-арабиноза и D-рибоза. Из представителей других классов моносахаридов часто встречаются дезоксисахара, в молекулах которых одна или несколько гидроксильных групп заменены атомами водорода (L-рамноза, L-фукоза, 2-дезокси-D-рибоза); аминосахара, в молекулах которых один или несколько гидроксилов заменены на аминогруппы (D-глюкозамин, D-галактозамин); многоатомные спирты, или альдиты, образующиеся при восстановлении карбонильных групп моносахаридов (сорбит, маннит); уроновые кислоты, то есть моносахариды, у которых первичная спиртовая группа окислена до карбоксильной (D-глюкуроновая к-та); разветвленные сахара, содержащие нелинейную цепь углеродных атомов (апиоза, L-cтрептоза); высшие сахара с длиной цепи более шести атомов углерода (седогептулоза, сиаловые кислоты). За исключением D-глюкозы и D-фруктозы свободные моносахариды встречаются в природе редко. Обычно они входят в состав разнообразных гликозидов, олиго- и полисахаридов и могут быть получены из них кислотным гидролизом. Разработаны методы химического синтеза редких моносахаридов, исходя из более доступных.

Олигосахариды содержат в своем составе от 2 до 10-20 моносахаридных остатков, связанных гликозидными связями. Наиболее распространены в природе дисахариды: сахароза в растениях, трегалоза в насекомых и грибах, лактоза в молоке млекопитающих Рис.1).

Рис. 1. Структура дисахаридов сахарозы и мальтозы

Известны многочисленные гликозиды олигосахаридов, к которым относятся различные физиологически активные вещества (флавоноиды, сердечные гликозиды, сапонины, многие антибиотики, гликолипиды).

Полисахариды — высокомолекулярные, линейные или разветвленные соединения, молекулы которых построены из моносахаридов, связанных гликозидными связями. В состав полисахаридов могут входить также заместители неуглеводной природы (остатки фосфорной, серной и жирных кислот). В свою очередь цепи полисахаридов могут присоединяться к <белкам с образованием гликопротеидов. Отдельную группу составляют биополимеры, в молекулах которых остатки моно- или олигосахаридов соединены друг с другом не гликозидными, а фосфодиэфирными связями; к этой группе относятся тейхоевые кислоты из клеточных стенок грамположительных бактерий, некоторые полисахариды дрожжей, а также , в основе которых лежит полирибозофосфатная (РНК) или поли-2-дезоксирибозофосфатная (ДНК) цепь.

Физико-химические свойства углеводов

Благодаря обилию полярных функциональных групп моносахариды хорошо растворяются в воде и не растворяются в неполярных органических растворителях. Способность к таутомерным превращениям обычно затрудняет кристаллизацию моносахаридов. Если такие превращения невозможны, как в гликозидах или олигосахаридах типа сахарозы, вещества кристаллизуются легко. Многие гликозиды (например, сапонины) проявляют свойства поверхностно-активных соединений. Полисахариды являются гидрофильными полимерами, молекулы которых способны к ассоциации с образованием высоковязких растворов (растительной слизи, гиалуроновая кислота); полисахариды могут образовывать прочные гели (агар, алъгиновые кислоты, каррагинаны, пектины). В отдельных случаях молекулы полисахаридов образуют высокоупорядоченные надмолекулярные структуры, нерастворимые в воде (целлюлоза, хитин).

Биологическая роль углеводов

Роль углеводов в живых организмах чрезвычайно многообразна. В растениях моносахариды являются первичными продуктами фотосинтеза и служат исходными соединениями для биосинтеза разнообразных гликозидов, полисахаридов, а также веществ других классов (аминокислот, жирных кислот, полифенолов и т.д.). Эти превращения осуществляются соответствующими ферментными системами, субстратами для которых служат, как правило, богатые энергией фосфорилированные производные сахаров, главным образом нуклеозиддифосфатсахара. Углеводы запасаются в виде крахмала в высших растениях, в виде гликогена в животных, бактериях и грибах и служат энергетическим резервом для жизнедеятельности организма. В виде гликозидов в растениях и животных осуществляется транспорт различных продуктов обмена веществ. Многочисленные полисахариды или более сложные углеводсодержащие полимеры выполняют в живых организмах опорные функции. Жёсткая клеточная стенка у высших растений построена из целлюлозы и гемицеллюлоз, у бактерий — из пептидогликана; в построении клеточной стенки грибов и наружного скелета членистоногих принимает участие хитин. В организме животных и человека опорные функции выполняют сульфатированные мукополисахариды соединительной ткани, свойства которых позволяют обеспечить одновременно сохранение формы тела и подвижность отдельных его частей; эти полисахариды также способствуют поддержанию водного баланса и избирательной катионной проницаемости клеток. Аналогичные функции в морских многоклеточных водорослях выполняют сульфатированные галактаны (красные водоросли) или более сложные сульфатированные гетерополисахариды (бурые и зелёные водоросли); в растущих и сочных тканях высших растений аналогичную функцию выполняют пектиновые вещества. Важную и до конца ещё не изученную роль играют сложные углеводы в образовании специфических клеточных поверхностей и мембран. Так, гликолипиды — важнейшие компоненты мембран нервных клеток, липополисахариды образуют наружную оболочку грамотрицательных бактерий. У. клеточных поверхностей часто определяют явление иммунологической специфичности, что строго доказано для групповых веществ крови и ряда бактериальных антигенов. Имеются данные, что углеводные структуры принимают участие также в таких высокоспецифичных явлениях клеточного взаимодействия, как оплодотворение, «узнавание» клеток при тканевой дифференциации и отторжении чужеродной ткани и т.д.

Практическое значение углеводов

Углеводы составляют большую (часто основную) часть пищевого рациона человека. В связи с этим они широко используются в пищевой и кондитерской промышленности (крахмал, сахароза, пектиновые вещества, агар). Их превращения при спиртовом брожении лежат в основе процессов получения этилового спирта, пивоварения, хлебопечения; другие типы брожения позволяют получить глицерин, молочную, лимонную, глюконовую кислоты и др. вещества. Глюкоза, аскорбиновая кислота, сердечные гликозиды, углеводсодержащие антибиотики, гепарин широко применяются в медицине. Целлюлоза служит основой текстильной промышленности, получения искусственного целлюлозного волокна, бумаги, пластмасс, взрывчатых веществ и др.

Историческая справка

Превращения углеводов известны с древнейших времён, так как они лежат в основе процессов брожения, обработки древесины, изготовления бумаги и тканей из растительного волокна. Тростниковый сахар (сахарозу) можно считать первым органическим веществом, выделенным в химически чистом виде. Химия углеводов возникла и развивалась вместе с ; создатель структурной теории органических соединений А.М. Бутлеров — автор первого синтеза сахароподобного вещества из формальдегида (1861). Структуры простейших сахаров выяснены в конце XIX века в результате фундаментальных исследований немецких учёных Г. Килиани и Э. Фишера . В 20-х гг. XX века были заложены основы структурной химии полисахаридов (У.Н. Хоуорс). Со 2-й половины XX века происходит стремительное развитие химии и биохимии углеводов, обусловленное их важным биологическим значением и базирующееся на современной теории органической химии и новейшей технике эксперимента.

.

Углево́ды (сахара , сахариды) - органические вещества, содержащие карбонильную группу и несколькогидроксильных групп . Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой C x (H 2 O) y , формально являясь соединениями углерода и воды.

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц - олигосахариды, а более десяти - полисахариды. Обычные моносахариды представляют собой полиокси-альдегиды (альдозы) или полпоксикетоны (кетозы) с линейной цепью атомов углерода (m = 3-9), каждый из которых (кроме карбонильного углерода) связан с гидроксильной группой. Простейший из моносахаридов - глицериновый альдегид - содержит один асимметрический атом углерода и известен в виде двух оптических антиподов (D и L). Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые медленными углеводами постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры, с образованием сотни и тысячи молекул моносахаридов

В живых организмах углеводы выполняют следующие функции:

1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентомклеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих .

2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.

3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК) .

4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды .

5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин - у растений .

6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100-110 мг/% глюкозы, от концентрацииглюкозы зависит осмотическое давление крови.

7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

18. Моносахариды: триозы, тетрозы, пентозы, гексозы. Строение, открытые и циклические формы. Оптическая изомерия. Химические свойства глюкозы, фруктозы. Качественные реакции на глюкозу.

Моносахари́ды (от греческого monos - единственный, sacchar - сахар) - простейшие углеводы, не гидролизующиеся с образованием более простых углеводов - обычно представляют собой бесцветные, легко растворимые в воде, плохо - в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения , одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладаютсладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза . При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза . В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы , тетрозы , пентозы , гексозы , гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы . Моносахариды - стандартные блоки, из которых синтезируются дисахариды,олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (виноградный сахар или декстроза , C 6 H 12 O 6) - шестиатомный сахар (гексоза ), структурная единица (мономер) многих полисахаридов (полимеров) - дисахаридов: (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов .

Качественная реакция:

Прильём к раствору глюкозы несколько капель раствора сульфата меди (II) и раствор щелочи. Осадка гидроксида меди не образуется. Раствор окрашивается в ярко-синий цвет. В данном случае глюкоза растворяет гидроксид меди (II) и ведет себя как многоатомный спирт, образуя комплексное соединение.
Нагреем раствор. В этих условиях реакция с гидроксидом меди (II) демонстрирует восстановительные свойства глюкозы. Цвет раствора начинает изменяться. Сначала образуется желтый осадок Cu 2 O, который с течением времени образует более крупные кристаллы CuO красного цвета. Глюкоза при этом окисляется до глюконовой кислоты.

2HOСН 2 -(СНOH) 4)-СН=O + Cu(OH) 2 2HOСН 2 -(СНOH) 4)-СOOH + Cu 2 O↓ + 2H 2 O

19. Олигосахариды: строение, свойства. Дисахариды: мальтоза, лактоза, целлобиоза, сахароза. Биологическая роль.

Основная масса олигосахаридов представлена дисахаридами, среди которых важную роль для организма животных играют сахароза, мальтоза и лактоза. Дисахарид целлобиоза имеет важное значение для жизни растений.
Дисахариды (биозы) при гидролизе образуют два одинаковых или различных моносахарида. Для установления их строения необходимо знать, из каких моноз построен дисахарид; в какой форме, фуранозной или пиранозной, находится моносахарид в дисахариде; с участием каких гидроксилов связаны две молекулы простого сахара.
Дисахариды можно разделить на две группы: не восстанавливающие и восстанавливающие сахара.
К первой группе относится трегалоза (грибной сахар). К таутомерии она неспособна: эфирная связь между двумя остатками глюкозы образована с участием обоих глюкозидных гидроксилов
Ко второй группе относится мальтоза (солодовый сахар). Она способна к таутомерии, так как для образования эфирной связи использован только один из глюкозидных гидроксилов и, следовательно, содержит в скрытой форме альдегидную группу. Восстанавливающий дисахарид способен к мутаротации. Он реагирует с реактивами на карбонильную группу (аналогично глюкозе), восстанавливается в многоатомный спирт, окисляется в кислоту
Гидроксильные группы дисахаридов вступают в реакции алкилирования и ацилирования.
Сахароза (свекловичный, тростниковый сахар). Очень распространен в природе. Получается из сахарной свеклы (содержание до 28% от сухого вещества) и сахарного тростника. Является не восстанавливающим сахаром, так как и кислородный мостик образован с участием обеих гликозидных гидроксильных групп

Мальтоза (от англ. malt - солод) - солодовый сахар, природный дисахарид, состоящий из двух остатков глюкозы; содержится в больших количествах в проросших зёрнах (солоде) ячменя, ржи и других зерновых; обнаружен также в томатах, в пыльце и нектаре ряда растений. Мальтоза легко усваивается организмом человека. Расщепление мальтозы до двух остатков глюкозы происходит в результате действия фермента a-глюкозидазы, или мальтазы, которая содержится в пищеварительных соках животных и человека, в проросшем зерне, в плесневых грибах и дрожжах

Целлобиоза - 4-(β-глюкозидо)-глюкоза, дисахарид, состоящий из двух остатков глюкозы, соединённых β-глюкозидной связью; основная структурная единица целлюлозы. Целлобиоза образуется при ферментативном гидролизе целлюлозы бактериями, обитающими в желудочно-кишечном тракте жвачных животных. Затем целлобиоза расщепляется бактериальным ферментом β-глюкозидазой (целлобиазой) до глюкозы, что обеспечивает усвоение жвачными целлюлозной части биомассы.

Лактоза (молочный сахар) С12Н22О11 - углевод группы дисахаридов, содержится в молоке. Молекула лактозы состоит из остатков молекул глюкозы и галактозы. Применяют для приготовления питательных сред, например при производстве пенициллина. Используют в качестве вспомогательного вещества (наполнителя) в фармацевтической промышленности. Из лактозы получают лактулозу - ценный препарат для лечения кишечных расстройств, например, запора.

20. Гомополисахариды: крахмал, гликоген, целлюлоза, декстрины. Строение, свойства. Биологическая роль. Качественная реакция на крахмал.

Гомополисахариды (гликаны ), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны ) происхождения .

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л (C 6 H 10 O 5) n - смесь двух гомополисахаридов: линейного - амилозы и разветвлённого - амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде . Молекулярная масса 10 5 -10 7 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10-30 %, амилопектина - 70-90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20-30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации - декстрины (C 6 H 10 O 5) p , а при полном гидролизе - глюкоза .

Гликоге́н (C 6 H 10 O 5) n - полисахарид, построенный из остатков альфа-D-глюкозы - главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 10 5 -10 8 Дальтон и выше . В организмах животных является структурным и функциональным аналогом полисахарида растений - крахмала . Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован - сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы . В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100-120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) - наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном - D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс . Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу

Качественная реакция на крахмал проводиться со спиртовым раствором йода. При взаимодействии с йодом крахмал образует комплексное соединение сине-фиолетового цвета



Загрузка...