caspian72.ru

Венозное давление в разных отделах венозного русла. Артериальное давление в различных участках сосудистого русла

В этих условиях кровь оказывает на стенки сосудов определенное давление, как и любая жидкость, находящаяся в закрытой емкости. Величина кровяного давления непостоянна и изменяется под действием различных факторов, в первую очередь в зависимости от фаз работы сердца. Во время систолы (сокращения сердечной мышцы) ток крови усиливается, и давление повышается, а в период диастолы (расслабления) - замедляется, что вызывает снижение его величины.
Кроме этого, давление зависит от общего количества крови, находящегося в сосудах, а оно постоянно изменяется в одну, или в другую сторону. Например, после того как человек выпивает какое-то количество жидкости, она всасывается в кровь и вызывает небольшое увеличение ее объема. Напротив, фильтрация воды почками приводит к его уменьшению.
Почему же человек не впадает в гипертонический криз каждый раз, как выпьет стакан воды? Дело в том, что в регуляции уровня кровяного давления участвуют многочисленные механизмы, в частности те, которые направлены на изменение тонуса, а следовательно, и диаметра сосудов. Согласно законам физики, если размер емкости, в которой находится определенное количество жидкости, увеличить, то ее давление на стенки сосуда уменьшится. Точно так же при увеличении объема циркулирующей крови кровеносные сосуды расслабляются, что не допускает его резких скачков. В обратной ситуации происходит наоборот - тонус сосудистой стенки повышается, общая емкость кровеносного русла становится меньше, и в результате потери части жидкости не происходит падения цифр давления.
Человек даже не задумывается о том, насколько интенсивная работа постоянно происходит внутри его тела. За регуляцию и поддержание постоянного тока крови отвечает множество органов - головной мозг, сердце, железы внутренней секреции, стенки сосудов, изменяющие свой тонус и выделяющие биологически активные вещества, и т.д. Все они позволяют поддерживать в сосудистом русле давление, превышающее атмосферное. Это важнейшее условие, необходимое для того, чтобы человек продолжал жить. При слишком сильном повышении или резком снижении его величины скорость тока крови по капиллярам меняется, в результате чего клетки тела теряют способность получать кислород и питательные вещества, а также избавляться от вредных продуктов обмена веществ. Это может вызвать в организме тяжелейшие нарушения, вплоть до гибели.
Говоря о давлении в сосудистом русле, в первую очередь подразумевают артериальное - то, которое создается в артериях, несущих кровь от сердца к тканям. Однако, кроме артерий, в нашем организме есть вены и капилляры, давление в которых отличается от артериального. В отношении диагностики, капиллярное давление нас интересует мало, а вот о венозном следует сказать подробнее. Как известно, артериальное давление измеряется в миллиметрах ртутного столба. Его цифры наиболее велики по сравнению с давлением, которое создается в других частях кровяного русла, так как именно в эти сосуды поступает мощный поток крови, с силой выталкиваемой сердцем. В отличие от этого, в венах давление измеряют в миллиметрах водного столба. Регистрация венозного давления проводится при помощи специального аппарата Вальдмана. Она необходима при экстренных состояниях, например при шоке или крупной кровопотере. Зная цифры венозного давления, врач может правильно рассчитать объем жидкости, которую следует вводить больному внутривенно.

{module директ4}

Вернемся к наиболее важному показателю - артериальному давлению (АД). Его величина является одним из основных показателей здоровья сердечно-сосудистой системы, и не только ее. Изменение АД может проявляться при заболеваниях почек, печени, крови и т.д. Поэтому давление измеряют всем больным, вне зависимости от того, какой врач их лечит - кардиолог, невролог, хирург или другой специалист. Артериальное давление - это интегральный показатель, который реагирует практически на любое неблагополучие в организме - от кислородного голодания при пребывании в душной комнате до нарушений в работе щитовидной железы. Иногда его изменение может быть единственным симптомом развивающейся болезни. Так, у больных феохромоцитомой - доброкачественной опухолью надпочечников - признаки болезни могут проявляться только повторными гипертоническими кризами.
Наверное, каждому человеку в возрасте старше 10 лет хотя бы раз измеряли АД. Результат этого измерения выглядит в виде двух цифр - первая из них всегда больше, вторая - всегда меньше. Что же они означают?
Первая величина отражает систолическое артериальное давление - давление крови, которое возникает в большом круге кровообращения в момент выброса крови левым желудочком. Речь идет только о большом круге, так как именно он снабжает кровью все ткани тела, кроме легких, в частности, верхние конечности, на которых и определяется АД. Нормальная величина систолического давления составляет <120 мм рт.ст. У каждого человека может быть своя норма, при которой он чувствует себя комфортно. У кого-то это 120 мм, у кого-то - 90. Если артериальное давление снижается и достигает менее 90 мм рт.ст., это говорит о гипотонии. Что касается сдвига в сторону повышения, отечественные кардиологи говорят о том, что менее 120 мм - это оптимальное давление, от 120 до 130 мм - нормальное, и от 130 до 140 - нормальное повышенное. Выделение «нормального повышенного» давления - спорный вопрос. Оно может считаться приемлемым для тех людей, которые отличаются мощным телосложением, например для крупных мужчин, не страдающих при этом никакими заболеваниями.
В отличие от российских врачей, американские специалисты говорят о том, что систолическое давление ниже 120 мм рт. ст. является нормальным, а величины от 120 до 130 мм они обозначают как «предгипертонию», т.е. состояние, предшествующее гипертонической болезни.
Как становится понятно, отношение к нормам артериального давления весьма неоднозначно. В любом случае, оптимальными цифрами являются величины 110- 120 мм рт. ст.

Правый и левый желудочки за один удар сердца выбрасывают равные количества крови, но правый, снабжающий только легкие, делает это с меньшей силой. Давление в легочной артерии в норме составляет лишь 25-30 мм рт. ст. и повышается, например, при тяжелых заболеваниях легких.

Вторая цифра, получаемая при измерении давления, называется диастолическим АД. Оно обозначает величину кровяного давления в течение диастолы - когда сердечная мышца расслабляется и не выталкивает кровь. По величине диастолического показателя можно судить о состоянии сосудов. Чем больше их тонус, тем она выше, и наоборот. Например, при тяжелой аллергической реакции или лихорадке Диастолическое давление может сильно снижаться и даже стремиться к нулю, а при гипотиреозе - заболевании щитовидной железы, при котором падает уровень продукции ею гормонов - оно возрастает до 100-110 мм рт.ст.
Норма диастолического артериального давления ≤80 мм рт. ст. Повышение больше 85-90 мм говорит о гипертонии, снижение меньше 60 мм - о гипотонии. Таким образом, нормальное артериальное давление может выглядеть как 120/80, 110/75, 100/70 и т.д.
Кроме систолического и диастолического АД, существует еще так называемое пульсовое. Пульсовое артериальное давление - это разница между систолическим и диастолическим, т. е. между «верхней» и «нижней» цифрами, полученными при измерении. У здоровых людей оно составляет порядка 30-40 мм рт.ст. Пульсовое давление может увеличиваться или уменьшаться при отдельных заболеваниях. В частности, у некоторых пожилых людей гипертония носит особенный характер - систолическое давление возрастает, а диастолическое, напротив, снижается. В результате величина АД может составлять 160/80, 170/65 мм рт.ст. и т. д. При этом пульсовое давление возрастает до 50, 80, 100 мм рт.ст. и более.
При регистрации и оценке АД всегда нужно помнить о том, что отклонения не обязательно означают наличие какой-то болезни. Для того чтобы заподозрить заболевание, необходимо зафиксировать не одномоментное, а стойкое повышение давления. Нередко бывает, что человек полагается на случайные измерения, которые могут оказаться не показательными. Так, давление, которое определяется после физической нагрузки, употребления кофе или волнения, может быть повышенным. Если в течение нескольких минут оно нормализуется, то брать в расчет следует именно те цифры, которые получают в покое.

Как уже отмечалось, по величине давления кровеносную систему принято подразделять на два отдела - систему высокого и систему низкого давления. К первому из них относят прекапиллярный отдел сердечно-сосудистой системы, а ко второму - посткапиллярный. Такое деление определяется не только различиями давления, но и неодинаковыми механизмами, которые его определяют. Так, если уровень артериального давления зависит от тонуса резистивных сосудов, с одной стороны, и сердечного выброса, с другой, то венозное давление в конечном счете может определяться четырьмя группами факторов: 1) силами подпора - оттоком из капилляров; 2) фронтальным сопротивлением, зависящим от работы правого сердца; 3) тонусом вен и 4) экстравазальными факторами (сдавлением вен). Снижение давления по направлению тока крови в различных областях далеко не одинаково и зависит от особенностей строения русла. Так, если в большинстве сосудистых областей давление в артериолах диаметром 30-40 мкм составляет 70-80% от системного артериального давления (Richardson, Zweifach, 1970), то эти соотношения для сосудов мозга несколько отличны. По данным Shapiro с соавт. (1971), уже в ветвях средней мозговой артерии кошек диаметром более 455 мкм давление составляет 61% от аортального, а в пиальных артериолах диаметром 40-25 мкм оно уменьшается еще на 10%.

Величина среднединамического давления в сосудистой системе колеблется в широком диапазоне (таблица 4), что необходимо учитывать при выборе соответствующих манометров.

В настоящее время в практике физиологических исследований для регистрации давления в различных участках сосудистого русла используют жидкостные, пружинные и электрические манометры.

По данным Wiggers (1957), манометры для регистрации давления крови должны обладать следующими свойствами:
1. Высокой чувствительностью и способностью регистрировать давление в достаточно широком диапазоне (1 мм вод. ст.- 300 мм рт. ст.).
2. Малой инерционностью, т. е. достаточно высокой частотой собственных колебаний, которая должна превышать в 5-10 раз частоту колебаний исследуемого процесса.
3. Линейностью характеристики.
4. Малым смещением (объемом его) в системе соединительных трубок между манометром и кровеносным сосудом (0,1-0,5 мм 3).
5. Возможностью синхронно с записью артериального давления регистрировать на одной и той же ленте другие физиологические процессы.

Следует отметить, что не все применяемые в исследованиях манометры отвечают указанным выше требованиям.

В жидкостных манометрах, как известно, исследуемое давление уравновешивается столбом манометрической жидкости (обычно ртути или воды). Они)могут быть приспособлены для регистрации стационарных и переменных давлений в диапазоне от 200-300 мм рт. ст. до 1·10 -4 мм рт. ст., что соответствует величине давления в различных участках сосудистого русла. Конструктивно эти приборы могут быть выполнены в виде одноколенного чашечного манометра (аппарат Рива - Роччи), манометра с наклонной трубкой либо двухколенного U-образного манометра, предложенного Пуазейлем еще в 1828 г.

При работе с жидкостными, в частности ртутными, манометрами следует иметь в виду, что для детальной регистрации быстрых колебаний они совершенно непригодны (А. Б. Коган, С. И. Щитов, 1967). Это определяется собственной периодичностью жидкостного манометра, которая зависит от длины столба жидкости и подчиняется закону колебаний маятника:
(3.1)
где Т - период колебаний; l - длина столба жидкости; g - ускорение силы тяжести.

Из формулы следует, что практически период колебаний столба жидкости в обычном ртутном манометре и соединительной трубке составляет около 2 с. Отсюда частота собственных колебаний f = 1/T составит около 0,5 Гц. Очевидно, что эта частота может быть резонансной для регистрируемых колебаний, вследствие чего амплитуда их будет преувеличена, а при увеличении или снижении частоты вынужденных колебаний она будет уменьшенной. При этом правильный характер записи будет при частоте, превышающей резонансную (А. Б. Коган, С. И. Щитов, 1967).

Необходимо отметить, что жидкостные манометры могут быть использованы не только для регистрации абсолютной величины давления, но и какой-либо относительной переменной величины (разности двух давлений, амплитуды и быстроты давления). Такие манометры, как известно, носят название дифференциальных.

В качестве наиболее простых дифференциальных манометров могут быть использованы U-образные ртутные манометры. Для получения разности давления в 2 сосудах (например, в сонной артерии и яремной вене, в центральном и периферическом концах сонной артерии) сосуды подсоединяют к обоим коленам манометра. Явное удобство этого способа дифференцирования состоит в том, что он не требует раздельного измерения давлений и специальных приспособлений для синхронности наблюдений.

В практике физиологических экспериментов весьма часто возникает необходимость в определении так называемого среднединамического давления, величина которого используется, в частности, для расчета общего периферического сопротивления сосудов. Для его регистрации может быть использован апериодизированный манометр, предложенный еще И. М. Сеченовым в 1861 году. Его отличительной чертой является «переуспокоенный» режим работы, который достигается введением в соединительную часть (между коленами) крана или резиновой трубки с винтовыми зажимами. За счет сужения соединительной части достигается увеличение внешнего трения ртути и демпфируются все быстрые колебания, обусловленные деятельностью сердца. Результирующим в этом случае будет уровень эффективного (среднединамического) давления.

В дополнение к характеристике жидкостных манометров укажем, что они применимы для регистрации абсолютных величин давления как в артериальных и венозных сосудах, так и в капиллярах. При измерении венозного давления следует иметь в виду, что гидростатическое давление крови в венах может оказывать существенное влияние на измеряемые величины гемодинамического давления. С этой целью манометр нужно устанавливать в таком положении, чтобы уровень его нулевого деления, место пункции вены и положение правого предсердия совпадали.

В пружинных манометрах в отличие от жидкостных измеряемое давление уравновешивается силами так называемого упругого элемента, которые возникают при его деформации. В зависимости от элемента (его геометрической формы) пружинные манометры могут быть трубчатыми, мембранными, сильфонными и т. д.

Достоинством этого класса манометров является высокая чувствительность и возможность создания оптимальной частотной характеристики. Пружинные манометры обладают собственной частотной характеристикой от 17 (модель Фика) до 450 Гц (модель Уиггерса), что позволяет регистрировать как максимальное, так и минимальное артериальное давление.

В электрических манометрах, большинство которых предназначено для регистрации переменных величин (за исключением манометров сопротивления), давление передается на устройства, изменяющие свои электрические параметры (ЭДС, индуктивность, сопротивление). Эти изменения регистрируются с помощью соответствующих электроизмерительных и осциллографических приборов. Достоинством электроманометров является их большая чувствительность и малая инерционность, что позволяет регистрировать малые и быстроизменяющиеся величины давления.

В качестве датчиков в электроманометрах используются пьезокристаллы, тензодатчики, угольнопорошковые и проволочные датчики сопротивления и др. Последний тип использован в отечественном манометре ЭМ2-01.

23 Кровообращение в капиллярах. Механизмы транскапиллярного обмена жидкости и других веществ между кровью и тканями.

Капилляры - это тончайшие сосуды, расположенные в межклеточных пространствах, тесно примыкая к клеткам тканей различных органов. Скорость кровотока в капиллярах крайне мала. Небольшая толщина стенки капилляра и его тесный контакт с клетками обеспечивают возможность обмена веществ в системе кровь/межклеточная жидкость.

Кровообращение в капиллярах.

Особенности капилляров большого круга кровообращения .

Различные ткани организма неодинаково насыщены капиллярами: минимально-насыщена костная ткань, максимально - мозг, почки, сердце, железы внутренней секреции.

Капилляры большого круга имеют большую общую поверхность.

Капилляры близко расположены к клеткам (не далее 50 мкм), а в тканях с высоким уровнем метаболизма (печень) - еще ближе (не далее 30 мкм).

Они оказывают высокое сопротивление току крови.

Линейная скорость кровотока в них низкая (0,3-0,5 мм/с).

Относительно большой перепад давления между артериальной и венозной частями капилляра.

Как правило, проницаемость стенки капилляра высокая.

В обычных условиях работает 1/3 всех капилляров, остальные 2/3 находятся в резерве - закон резервации.

Из работающих капилляров часть функционирует (дежурят), а часть - не функционируют - закон "дежурства" капилляров.

Особенности капилляров малого круга кровообращения :

Капилляры малого круга кровообращения короче и шире по сравнению с капиллярами большого круга.

В этих капиллярах меньше сопротивление току крови, поэтому правый желудочек во время систолы развивает меньшую силу.

Сила правого желудочка создает меньшее давление в легочных артериях и, следовательно, в капиллярах малого круга.

В капиллярах малого круга практически нет перепада давления между артериальной и венозной частями капилляра.

Интенсивность кровообращения зависит от фазы дыхательного цикла: уменьшение на выдохе и увеличение на вдохе.

В капиллярах малого круга не происходит обмена жидкости и растворенных в ней веществ с окружающими тканями.

В легочных капиллярах осуществляется только газообмен.

Механизмы транскапиллярного обмена жидкости и других веществ между кровью и тканями.

Механизм транскапиллярного обмена . Транскапиллярный (транссосудистый) обмен может осуществляться за счет пассивного транспорта (диффузия, фильтрация, абсорбция), за счет активного транспорта (работа транспортных систем) и микропиноцитоза.

Фильтрационно-абсорбционный механизм обменамежду кровью и интерстициальной жидкостью . Этот механизм обеспечивается за счет действия следующих сил. В артериальном отделе капилляра большого круга кровообращения гидростатическое давление крови равно 40 мм рт. ст. Сила этого давления способствует выходу (фильтрации) воды и растворенных в ней веществ из сосуда в межклеточную жидкость. Онкотическое давление плазмы крови, равное 30 мм рт. ст., препятствует фильтрации, т. к. белки удерживают воду в сосудистом русле. Онкотическое давление межклеточной жидкости, равное 10 мм. рт. ст., способствует фильтрации - выходу воды из сосуда. Таким образом, результирующая всех сил, действующих в артериальном отделе капилляра, равна 20 мм. рт. ст. (40+10-30=20 мм рт. ст.) и направлена из капилляра. В венозном отделе капилляра (в посткапиллярной венуле) фильтрация будет осуществляться следующими силами: гидростатическое давление крови, равное 10 мм рт. ст., онкотическое давление плазмы крови, равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна 10 мм рт. ст. (-10+30-10=10) и направлена в капилляр. Следовательно в венозном отделе капилляра происходит абсорбция воды и растворенных в ней веществ. В артериальном отделе капилляра жидкость выходит под воздействием силы в 2 раза большей, чем она входит в капилляр в его венозном отделе. Возникающий, таким образом, избыток жидкости из интерстициальных пространств оттекает через лимфатические капиляры в лимфатическую систму.

В капиллярах малого круга кровообращения транскапиллярный обмен осуществляется за счет действия следующих сил: гидростатическое давление крови в капиллярах, равное 20 мм рт. ст., онкотическое давление плазмы крови; равное 30 мм рт. ст., онкотическое давление межклеточной жидкости, равное 10 мм рт. ст. Результирующая всех сил будет равна нулю. Следовательно, в капиллярах малого круга кровообращения обмена жидкости не происходит.

Диффузионный механизм транскапиллярного обмена . Этот вид обмена осуществляется в результате разности концентраций веществ в капилляре и межклеточной жидкости. Это обеспечивает движение веществ по концентрационному градиенту. Такое движение возможно потому, что размеры молекул этих веществ меньше пор мембраны и межклеточных щелей. Жирорастворимые вещества проходят мембрану независимо от величины пор и щелей, растворяясь в ее липидном слое (например, эфиры, углекислый газ и др.).

Активный механизм обмена - осуществляется эндотелиальными клетками капилляров, которые при помощи транспортных систем их мембран переносят молекулярные вещества (гормоны, белки, биологически активные вещества) и ионы.

Пиноцитозный механизм обеспечивает транспорт через стенку капилляра крупных молекул и фрагментов частей клеток опосредованно через процессы эндо- и экзопиноцитоза.

Нормальный уровень систолического давления в плечевой артерии для взрослого человека обычно находится в пределах 110–139 мм. рт. ст. Границы нормы для диастолического давления в плечевой артерии составляет 60–89 мм. рт. ст.

В кардиологии выделяют следующие уровни артериального давления:

оптимальный уровень АД крови: систолическое давление несколько меньше 120 мм. рт. ст., диастолическое - менее 80 мм. рт. ст.

нормальный уровень: систолическое давление менее 130 мм. рт. ст., диастолическое менее 85 мм. рт. ст.

высокий нормальный уровень: систолическое давление 130–139 мм. рт. ст., диастолическое 85–89 мм. рт. ст.

Несмотря на то, что с возрастом, особенно у людей старше 50 лет, АД крови обычно постепенно повышается, в настоящее время не принято говорить о возрастной норме повышения давления крови. При увеличении систолического давления 140 мм. рт. ст. и выше, а диастолического 90 мм. рт. ст. и выше рекомендуется принимать меры по его снижению.

Повышение АД относительно определенных для конкретного организма величин называется гипертензией (140–160 мм рт.ст.), снижение - гипотензией (90–100 мм рт.ст.). Под влиянием различных факторов АД может значительно изменяться. Так, при эмоциях наблюдается реактивное повышение АД (сдача экзаменов, спортивные соревнования). В данных ситуациях возникает так называемая опережающая (предстартовая) гипертензия. Наблюдаются суточные колебания АД, днем оно выше, при спокойном сне оно несколько ниже (на 20 мм рт.ст.). При приеме пищи систолическое давление умеренно повышается, диастолическое умеренно понижается. Боль сопровождается повышением АД, но при длительном воздействии болевого раздражителя возможно снижение АД.

При физических нагрузках систолическое давление - повышается, диастолическое - может повышаться, понижаться, либо не изменяется.

Артериальная гипертензия возникает:

    при повышении сердечного выброса;

    при повышении периферического сопротивления;

    при увеличении объема циркулирующей крови;

    при сочетании всех вышеуказанных факторов.

В клинике принято различать гипертензию первичную (эссенциальную) , встречается в 90-95% случаев, причины ее трудно определимы и вторичную (симптоматическую) - в 5-10% случаев. Она сопутствует различным заболеваниям. Гипотензию так же различают первичную, вторичную.

При переходе человека в вертикальное положение из горизонтального происходит перераспределение крови в организме. Временно снижаются: венозный возврат, центральное венозное давление (ЦВД), ударный объем, систолическое давление. Это вызывает активные приспособительные гемодинамические реакции: суживание резистивных и емкостных сосудов, повышение ЧСС, повышение выделения катехоламинов, ренина, возопрессина, ангиотензина II, альдостерона. У некоторых людей с пониженным АД эти механизмы могут быть недостаточны для поддержания нормального уровня АД в вертикальном положении тела и оно снижается ниже допустимого уровня. Возникает ортостатическая гипотензия: головокружение, потемнение в глазах, возможна потеря сознания - ортостатический коллапс (обморок). Подобное может наблюдаться при повышении температуры окружающей среды.

Периферическое сопротивление.

Второй фактор, определяющий АД - периферическое сопротивление сосудов, которое обусловлено состоянием резистивных сосудов (артерий и артериол).

Третий фактор, определяющий величину АД - количество циркулирующей крови и ее вязкость. При переливании больших количеств крови АД повышается, при кровопотере - снижается. Зависит АД от венозного возврата (например, при мышечной работе). АД постоянно колеблется от некоторого среднего уровня. При записи этих колебаний на кривой различают: волны I порядка - пульсовые - самые частые, их частота соответствует частоте сокращений сердца (в норме – 60–80/мин). Волны II порядка - дыхательные - (частота этих волн равна частоте дыхания, в норме 12–16/мин). На вдохе АД понижается, на выдохе повышается. Волны III порядка - медленные колебания давления (1–3/мин), каждое из которых охватывает несколько дыхательных волн. Обусловлены периодическими изменениями тонуса сосудодвигательного центра (обычно на фоне гипоксемии, например, в результате кровопотери).

Общие закономерности движения крови по кровеносному руслу.

Сопротивление току крови, а следовательно и падение давления на различных участках сосудистой системы весьма различны. Оно зависит от общего просвета и числа сосудов в разветвлении. Наибольшее падение давления крови - не менее 50% от начального давления – происходит в артериолах. Число артериол в сотни раз больше числа крупных артерий при сравнительно небольшом увеличении общего просвета сосудов. Поэтому потери давления от пристеночного трения в них весьма велики. Общее число капилляров еще больше, однако длина их настолько мала, что падение давления крови в них хотя и существенно, но меньше, чем в артериолах.

В сети венозных сосудов, площадь сечения которых в среднем в два раза больше площади сечения соответствующих артерий, скорость течения крови невысока и падения давления незначительны. В крупных венах около сердца давление становится на несколько миллиметров ртутного столба ниже атмосферного. Кровь в этих условиях движется под влиянием присасывающего действия грудной клетки при вдохе.

Течение крови в сосудистой системе в нормальных условиях имеет ламинарный характер. Оно может переходить в турбулентное при нарушении этих условий, например, при резком сужении просвета сосудов. Подобные явления могут иметь место при неполном открытии или, наоборот, при неполном закрытии сердечных или аортальных клапанов.

43. Гидравлическое сопротивление сосудов. Гидравлическое сопротивление разветвлённых участков.

Гидравлическое сопротивление сосудов X = 8 l h /(pR 4), где l - длина сосуда, R - его радиус, h - коэффициент вязкости, вводится на основании аналогий законов Ома и Пуазейля (движение электричества и жидкости описываются общими соотношениями).

Аналогия между электрическим и гидравлическим сопротивлениями позволяет использовать правило нахождения электрического сопротивления последовательного и параллельного соединений проводника, для определения гидравлического сопротивления системы последовательно или параллельно соединенных сосудов. Так, например, общее гидравлическое сопротивление последовательно и параллельно соединенных сосудов находится по формулам:

Х = Х 1 + Х 2 + Х 3 + … + Х N

X = (1/X 1 + 1/X 2 + 1/X 3 + …+ 1/X N) -1

Жидкости относительно несжимаемы. Однако, при действии внешних сил жидкость находится в особом напряженном состоянии. Говорят, что в этом случае жидкость находится под давлением, которое передается во все стороны (закон Паскаля). Оно действует также и на стенки сосуда или тела погруженного в жидкость.

Идеальной называется, несжимаемая и неимеющая внутреннего трения или вязкости, жидкость. Стационарным или установившимся называется течение, при котором скорости частиц жидкости в каждой точке потока со временем не изменяются.



Установившееся течение характеризуется соотношением: DV = vS = const. Это соотношение называется условием неразрывности струи.

При стационарном течении идеальной жидкости полное давление, равное сумме статического, гидростатического и динамического давлений, остается величиной постоянной в любом поперечном сечении потока: p + rgh + rv 2 /2 = const – уравнение Бернулли.

Все члены этого уравнения имеют размерность давления и называются: p = p ст – статическим, rgh = p г – гидростатическим, rv 2 /2 = p дин – динамическим.

Для горизонтальной трубки тока гидростаическое давление остается постоянным и может быть отнесено в правую часть уравнения, которое при этом принимает вид:

p ст + p дин = const , статическое давление обусловливает потенциальную энергию жидкости (энергию давления), динамическое давление – кинетическую. Из этого уравнения следует вывод, называемый правилом Бернулли: статическое давление невязкой жидкости при течении по горизонтальной трубе возрастает там, где скорость ее уменьшается, и наоборот. Чтобы оценить как изменяются скорость и давление крови в зависимости от участка сосудистого русла надо учесть, что площадь суммарного просвета всех капилляров в 500 - 600 раз больше поперечного сечения аорты. Это означает, что Vкап » Vаор/500. Именно в капиллярах при медленной скорости движения происходит обмен веществ между кровью и тканями. При сокращении сердца давление крови в аорте испытывает колебания. Среднее давление может быть найдено из формулы: Рср = Рд + (Рс - Рд) / 3. Падение давления крови вдоль сосудов может быть найдено из уравнения Пуазейля. Поскольку объемный расход крови должен сохраняться постоянным, а Хкап > Х арт > Хаорт, то DРкап > DР арт > DРаорт.



Загрузка...