caspian72.ru

Методы исследования лекарственных веществ. Физико-химических методы анализа лекарственный средств Общие физико химические методы анализа препаратов

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

“ СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ФЕДЕРАЛЬНОГО АГЕНТСТВА ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ”

Е.А. Краснов, А.А. Блинникова

ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ В АНАЛИЗЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ

УЧЕБНОЕ ПОСОБИЕ

УДК 543.544.1:615.074

ББК Г472+ Р282

Краснов Е.А., Блинникова А.А., Физико-химические методы в анализе лекарственных средств: Учебное пособие. – Томск, 2011. – 168 с.

В учебном пособии рассмотрены теоретические основы, аппаратурное оформление и аналитические возможности широко используемых физикохимических методов в фармацевтическом анализе. Описаны примеры применения ГЖХ, ВЭЖХ, спектрофотометрии, рефрактометрии, поляриметрии для установления подлинности, испытания на чистоту и количественное определение лекарственных средств. Приведены вопросы для самоподготовки и тестовые задания по указанным методам.

Учебное пособие предназначено для студентов, обучающихся по специальности фармация (заочной формы обучения).

Табл.8. Ил.35. Библиогр. 6 назв.

Рецензенты:

Заведующая кафедрой фармацевтической химии с курсом токсикологической

химии ММА им. И.М.Сеченова, д.ф.н.

профессор

Г.В.Раменская

Заведующая

кафедрой

фармацевтической

Новосибирского

государственного медицинского университета, д.ф.н.,

профессор

Е.А.Ивановская

BN5-98591-019-9 © Е.А.Краснов, А.А.Блинникова, 2010

© Сибирский государственный медицинский университет, 2010

ВВЕДЕНИЕ

ГЛАВА 1. РЕФРАКТОМЕТРИЯ

1.1. Теоретические основы

1.2. Рефрактометрическое определение концентрированных растворов

(концентратов лекарственных веществ)

1.3. Рефрактометрическое определение содержания лекарственных

веществ в водных растворах

1.4. Конструкция и описание лабораторного рефрактометра типа Аббе

Тестовые задания

Ситуационные задачи

Лабораторные работы

ГЛАВА 2. ПОЛЯРИМЕТРИЯ

2.1. Теоретические основы поляриметрии

Вопросы для самостоятельной подготовки

Тестовые задания

Практические задания

ГЛАВА 3. СПЕКТРОФОТОМЕТРИЯ ФОТОЭЛЕКТРО-

КОЛОРИМЕТРИЯ

3.1. Общие теоретические положения. Электронный спектр поглощения

и его характеристики

3.2. Основной закон светопоглощения

3.3. Причины отклонения от закона светопоглощения

3.4. Применение спектроскопии в УФ- и видимой областях

3.4.1. Испытание на подлинность лекарственных веществ

3.4.2. Испытание на чистоту

3.4.3. Определение количественного содержания лекарственных веществ

3.5. Особенности анализа лекарственных веществ в видимой области

3.6. Этапы фотометрического определения лекарственных средств при

разработке методики анализа

3.7. Аппаратура в фотометрии

Вопросы для самостоятельной подготовки

Тестовые задания

Ситуационные задачи

Лабораторные работы

ГЛАВА 4. ГАЗОВАЯ ХРОМАТОГРАФИЯ

4.1. Газожидкостная хроматография

4.2. Хроматографические параметры

4.3. Качественный анализ

4.4. Количественный анализ

4.4.1. Метод абсолютной градуировки

4.4.2.Метод внутренней нормализации

4.4.3. Метод внутреннего стандарта

4.5. Некоторые сведения о хроматографических приборах

Вопросы для самостоятельной подготовки

Тестовые задания

ГЛАВА 5. ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ

ВЫСОКОЭФФЕКТИВНАЯ ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ

5.1. Принцип анализа методом ВЭЖХ, основные узлы хроматографа

и их характеристика

5.2. Качественный и количественный анализы

5.3. Современные жидкостные хроматографы

Вопросы для самостоятельной подготовки

Тестовые задания

ГЛАВА 6. ПОТЕНЦИОМЕТРИЯ,

ПОТЕНЦИОМЕТРИЧЕСКОЕ ТИТРОВАНИЕ

Вопросы для самостоятельной подготовки

Тестовые задания

ОТВЕТЫ НА ТЕСТОВЫЕ ЗАДАНИЯ

ОТВЕТЫ НА СИТУАЦИОННЫЕ ЗАДАЧИ

ПРИЛОЖЕНИЯ

Список сокращений

БХ – бумажная хроматография ВЭЖХ – высокоэффективная жидкостная хроматография ГЖХ – газожидкостная хроматография

ГСО – государственный стандартный образец ГФ – государственная фармакопея КХ – колоночная хроматография НД – нормативный документ НЖД – неподвижная жидкая фаза НФ – неподвижная фаза

НФХ – нормально-фазовая хроматография ОФХ – обращено-фазовая хроматография ПГФ – подвижная газовая фаза ПТ – потенциометрическое титрование ПФ – подвижная фаза

РСО – рабочий стандартный образец СОВС – стандартный образец вещества-свидетеля ТСХ – тонкослойная хроматография УФ – ультрафиолетовый ФС – фармакопейная статья

ФСП – фармакопейная статья предприятия

ВВЕДЕНИЕ

Расширение арсенала лекарственных средств (ЛС) сопровождается развитием новых методов их анализа. Это связано с тем, что выход и качество конечных продуктов химико-фармацевтического производства зависит не только от строгого проведения процесса согласно технологическому регламенту, от качества исходного сырья, но и от применения надежных методов постадийного контроля. Поэтому вопросам совершенствования контроля качества ЛС в последнее десятилетие уделяется значительное внимание.

Как известно, аналитический контроль проводится на всех этапах производства, начиная от входного контроля качества сырья и заканчивая анализом готовой продукции. Этот контроль должен осуществляться в полном соответствии с действующей нормативной документацией (национальная фармакопея, ФСП). Нормативный документ содержит совокупность официальных методов исследования субстанций и их лекарственных форм, на основании результатов анализа которых решается вопрос о возможности их применения в медицинской практике. При этом устанавливается доброкачественность ЛС, складывающаяся как из определения подлинности, так и обнаружения примесей и количественного содержания действующего вещества.

Основными требованиями фармакопейного анализа ЛС являются высокая чувствительность, специфичность, точность и экспрессность. Этим требованиям удовлетворяют физические и физико-химические методы анализа, основанные на измерениях некоторых констант, присущих каждому веществу.

В основном физико-химические методы разделяют на три группы:

1) оптические методы, базирующиеся на закономерностях взаимодействия вещества с электромагнитным излучением;

2) хроматографические методы разделения и количественного определения смеси веществ, основанные на различии в распределении компонентов между подвижной и неподвижной фазой;

3) электрохимические методы анализа, в основе которых лежат электрохимические свойства вещества.

К числу оптических методов относятся: рефрактометрия,

поляриметрия, cпектрофотометрия, фотоколориметрия, фототурбидиметрия, флуориметрия. Из перечисленных методов последние два не рассматриваются, в связи с их ограниченным применением в фармацевтической практике.

Из хроматографических методов разделения используются: хроматография на бумаге, хроматография в тонком слое сорбента (ТСХ), газожидкостная хроматография (ГЖХ), высокоэффективная жидкостная хроматография (ВЭЖХ).

ВЭЖХ. Показана их исключительная универсальность, позволяющая решать задачи разделения смесей различных веществ – от самых простых до сложнейших органических соединений. На ряде примеров описано применение указанных методов для целей фармакопейного анализа.

К электрохимическим методам относятся: потенциометрия, кондуктометрия, полярография и др. В пособии нашла отражении только потенциометрия – метод, основанный на измерении разности равновесных потенциалов практически в отсутствие тока между индикаторным электродом и электродом сравнения, погруженными в анализируемый раствор.

Учитывая, что пособие рассчитано в основном на студентов заочного отделения, приведены вопросы для самоподготовки и тестовые задания по предлагаемым физико-химическим методам.

При подготовке настоящего учебного пособия включались только те сведения, знание которых необходимо для качественного и количественного анализов субстанций, лекарственных средств и обнаружения в них примесей.

ГЛАВА 1. РЕФРАКТОМЕТРИЯ

Рефрактометрия широко распространена в самых различных областях химии. Она применяется в фармацевтическом, биохимическом анализе, анализе пищевых продуктов и т.д. Этот метод является старейшим из применяемых в химии оптических методов исследования. Основываясь на величинах показателей преломления и плотности, Исаак Ньютон сделал интересные заключения о составе солей, этилового спирта и др. веществ. В середине ΧVIII в. петербургским академиком – Иоганном Эйлером была выполнена серия измерений показателей преломления ряда жидкостей.

Над конструкцией и усовершенствованием одного из первых рефрактометров работал Михаил Ломоносов с 1752 по 1762 г.

Большую роль в распространении рефрактометрии сыграли работы немецких профессоров Аббе (1840-1905) и Пульфриха (1858-1927), создавших удобные конструкции рефрактометров, широко применяемых и в настоящее время.

Широкому распространению рефрактометрии в качестве одного из методов анализа способствовало совмещение высокой точности, технической простоты и доступности. Показатель преломления принадлежит к числу немногих физических констант, которые можно измерить с очень высокой точностью и небольшой затратой времени, располагая малым количеством вещества. Существующие рефрактометры позволяют определить показатель преломления с точностью порядка 10–4 -10–5 , т.е. до 0,01% и даже до 0,001% от измеряемой величины. Для этого требуется 0,05-0,5 г вещества, а вся процедура измерений сводится к снятию показаний по шкале и несложному расчету. Время, необходимое для измерения и проведения соответствующих расчетов, составляет всего несколько минут. Существенным достоинством метода является возможность автоматической регистрации показателей преломления.

1.1.ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

При пересечении границы раздела двух прозрачных однородных сред

в начале XVII в. законом преломления. Согласно этому закону, отношение

синусов углов падения

и преломления

равное отношению скорости

распространения света

и V2 в двух соприкасающихся средах, есть величина

постоянная:

n = sinα

Где n – называется относительным показателем (или

коэффициентом)

преломления.

Показатель преломления зависит от ряда факторов:

∙ природы вещества;

∙ концентрации раствора;

∙ природы растворителя;

∙ температуры;

∙ длины волны света.

Рис. 1. Преломление луча на границе

двух прозрачных сред

При работе с растворами веществ сначала измеряют показатель преломления растворителя, который вычитают из показателя преломления раствора. Определение проводят при температуре 200 С и длине волны линии D спектра натрия 589,3 нм, и показатель преломления обозначают с индексами –

nD 20 .

Ниже приведены показатели преломления наиболее часто применяемых растворителей: вода – 1,3330; метанол – 1,3286; этанол – 1,3613; ацетон –1,3591; хлороформ – 1,4456.

Влияние температуры в рефрактометрии исключают, термостатируя призменные блоки, имеющие водные рубашки. При температурах, 10

К ним относятся: определение температур плавления и затвердевания, а также температурных пределов перегонки; определение плотности, показателей преломления (рефрактометрия), оптического вращения (поляриметрия); спектрофотометрия -- ультрафиолетовая, инфракрасная; фотоколориметрия, эмиссионная и атомно-абсорбционная спектрометрия, флуориметрия, спектроскопия ядерного магнитного резонанса, масс-спектрометрия; хроматография -- адсорбционная, распределительная, ионообменная, газовая, высокоэффективная жидкостная; электрофорез (фронтальный, зональный, капиллярный); электрометрические методы (потенциометрическое определение рН, потенциометрическое титрование, амперометрическое титрование, вольтамперометрия).

Кроме того, возможно применение методов, альтернативных фармакопейным, которые иногда имеют более совершенные аналитические характеристики (скорость, точность анализа, автоматизация). В некоторых случаях фармацевтическое предприятие приобретает прибор, в основе использования которого лежит метод, еще не включенный в Фармакопею (например, метод романовской спектроскопии -- оптический дихроизм). Иногда целесообразно при определении подлинности или испытании на чистоту заменить хроматографическую методику на спектрофотометрическую. Фармакопейный метод определения примесей тяжелых металлов осаждением их в виде сульфидов или тиоацетамидов обладает рядом недостатков. Для определения примесей тяжелых металлов многие производители внедряют такие физико-химические методы анализа, как атомно-абсорбционная спектрометрия и атомно-эмиссионная спектрометрия с индуктивно связанной плазмой.

В некоторых частных статьях ГФ X рекомендуется определять температуру затвердевания или температуру кипения (по ГФ XI -- «температурные пределы перегонки») для ряда жидких ЛC. Температура кипения должна укладываться в интервал, приведенный в частной статье. Более широкий интервал свидетельствует о присутствии примесей.

Во многих частных статьях ГФ X приведены допустимые значения плотности, реже вязкости, подтверждающие подлинность и доброкачественность ЛC.

Практически все частные статьи ГФ X нормируют такой показатель качества ЛC, как растворимость в различных растворителях. Присутствие примесей в ЛB может повлиять на его растворимость, снижая или повышая ее в зависимости от природы примеси.

Физические методы анализа

Подлинность лекарственного вещества подтверждают; агрегатное состояние (твердое вещество, жидкость, газ); окраска, запах; форма кристаллов или вид аморфного вещества; гигроскопичность или степень выветриваемости на воздухе; устойчивость к воздействию света, кислорода воздуха; летучесть, подвижность, воспламеняемость (жидкостей). Окраска лекарственного вещества -- одно из характерных свойств, позволяющее осуществить его предварительную идентификацию.

Степень белизны (оттенка) твердых лекарственных веществ можно оценить различными инструментальными методами на основе спектральной характеристики света, отраженного от образца. Для этого измеряют коэффициенты отражения при освещении образца белым светом. Коэффициент отражения -- это отношение величины отраженного светового потока к величине падающего светового потока. Он позволяет определить наличие или отсутствие у лекарственных веществ цветового оттенка по степени белизны и степени яркости. Для белых или белых с сероватым оттенком веществ степени белизны теоретически равна 1. Вещества, у которых она 0,95--1,00, а степени яркости < 0,85, имеют сероватый оттенок.

Более объективным является установление различных физических констант: температуры плавления (разложения), температуры кипения, плотности, вязкости. Важный показатель подлинности -- растворимость лекарственного препарата в воде, растворах кислот, щелочей, органических растворителях (эфире, хлороформе, ацетоне, бензоле, этиловом и метиловом спирте, маслах и др.).

Константой, характеризующей гомогенность твердых веществ, является температура плавления. Ее используют в фармацевтическом анализе для установления подлинности и чистоты большинства твердых лекарственных веществ. Известно, что это температура, при которой твердое тело находится в равновесии с жидкой фазой при насыщенной фазе пара. Температура плавления является постоянной величиной для индивидуального вещества. Присутствие даже небольшого содержания примесей изменяет (как правило, снижает) температуру плавления вещества, что позволяет судить о степени его чистоты. Под температурой плавления подразумевается интервал температур, при котором происходит процесс плавления испытуемого препарата от появления первых капель жидкости до полного перехода вещества в жидкое состояние. Некоторые органические соединения при нагревании разлагаются. Процесс этот происходит при температуре разложения и зависит от ряда факторов, в частности от скорости нагрева. Приведенные интервалы температур плавления указывают на то, что между началом и окончанием плавления лекарственного вещества интервал не должен превышать 2°С. Если переход вещества из твердого в жидкое состояние нечеткий, то вместо интервала температуры плавления устанавливают температуру, при которой происходит только начало или только окончание плавления. Следует учитывать, что на точность установления температурного интервала, при котором происходит плавление испытуемого вещества, могут влиять условия подготовки образца, скорость подъема и точность измерения температуры, опытность аналитика.

Температура кипения -- это интервал между начальной и конечной температурой кипения при нормальном давлении 760 мм рт.ст. (101,3 кПа). Температуру, при которой в приемник перегнались первые 5 капель жидкости, называют начальной температурой кипения, а температуру, при которой перешло в приемник 95% жидкости, -- конечной температурой кипения. Указанные пределы температур можно установить макрометодом и микрометодом. Следует учитывать, что температура кипения зависит от атмосферного давления. Температуру кипения устанавливают только у сравнительно небольшого числа жидких лекарственных препаратов: циклопропана, хлорэтила, эфира, фторотана, хлороформа, трихлорэтилена, этанола.

При установлении плотности берут массу вещества определенного объема. Плотность устанавливают с помощью пикнометра или ареометра, строго соблюдая температурный режим, так как плотность зависит от температуры. Обычно это достигается термостатированием пикнометра при 20°С. Определенные интервалы значений плотности подтверждают подлинность этилового спирта, глицерина, масла вазелинового, вазелина, парафина твердого, галогенопроизводных углеводородов (хлорэтила, фторотана, хлороформа), раствора формальдегида, эфира для наркоза, амилнитрита и др.

Вязкость (внутреннее трение) -- физическая константа, подтверждающая подлинность жидких лекарственных веществ. Различают динамическую (абсолютную), кинематическую, относительную, удельную, приведенную и характеристическую вязкость. Каждая из них имеет свои единицы измерения.

Для оценки качества жидких препаратов, имеющих вязкую консистенцию, например глицерина, вазелина, масел, обычно определяют относительную вязкость. Она представляет собой отношение вязкости исследуемой жидкости к вязкости воды, принятой за единицу.

Растворимость рассматривают не как физическую константу, а как свойство, которое может служить ориентировочной характеристикой испытуемого препарата. Наряду с температурой плавления растворимость вещества при постоянной температуре и давлении является одним из параметров, по которому устанавливают подлинность и чистоту практически всех лекарственных веществ.

Методика определения растворимости основана на том, что навеска предварительно растертого (в необходимых случаях) препарата вносится в отмеренный объем растворителя и непрерывно перемешивается в течение 10 мин при (20±2)°С. Растворившимся считают препарат, в растворе которого в проходящем свете не наблюдается частиц вещества. Если для растворения препарата требуется более 10 мин, то его относят к числу медленно растворимых. Их смесь с растворителем нагревают на водяной бане до 30° С и наблюдают полноту растворения после охлаждения до (20±2)°С и энергичного встряхивания в течение 1--2 мин.

Метод фазовой растворимости дает возможность осуществлять количественную оценку степени чистоты лекарственного вещества путем точных измерений значений растворимости. Суть установления фазовой растворимости заключается в последовательном прибавлении увеличивающейся массы препарата к постоянному объему растворителя. Для достижения состояния равновесия смесь подвергают длительному встряхиванию при постоянной температуре, а затем с помощью диаграмм определяют содержание растворенного лекарственного вещества, т.е. устанавливают, является ли испытуемый препарат индивидуальным веществом или смесью. Метод фазовой растворимости отличается объективностью, не требует для выполнения дорогостоящего оборудования, знания природы и структуры примесей. Это позволяет использовать его для качественного и количественного анализов, а также для изучения стабильности и получения очищенных образцов препаратов (до степени чистоты 99,5%), Важное достоинство метода -- возможность отличать оптические изомеры и полиморфные формы лекарственных веществ. Метод применим ко всем видам соединений, которые образуют истинные растворы.

Физико-химические методы

Приобретают все большее значение для целей объективной идентификации и количественного определения лекарственных веществ. Получивший распространение в различных отраслях недеструктивный анализ (без разрушения анализируемого объекта) играет важную роль и в фармацевтическом анализе. Для его выполнения пригодны многие физико-химические методы, в частности оптические, ЯМР-, ПМР-, УФ- и ИК- спектроскопия и др.

В фармацевтическом анализе наиболее широко используют физико-химические методы, которые могут быть классифицированы на следующие группы: оптические методы; методы, основанные на поглощении излучения; методы, основанные на испускании излучения; методы, основанные на использовании магнитного поля; электрохимические методы; методы разделения; термические методы.

Большинство перечисленных методов (за исключением оптических, электрохимических и термических) широко применяют для установления химической структуры органических соединений.

Физико-химические методы анализа имеют ряд преимуществ перед классическими химическими методами. Они основаны на использовании как физических, так и химических свойств веществ и в большинстве случаев отличаются экспрессностью, избирательностью, высокой чувствительностью, возможностью унификации и автоматизации.

Физико-химические или инструментальные методы анализа

Физико-химические или инструментальные методы анализа основаны на измерении с помощью приборов (инструментов) физических параметров анализируемой системы, которые возникают или изменяются в ходе выполнения аналитической реакции.

Бурное развитие физико-химических методов анализа было вызвано тем, что классические методы химического анализа (гравиметрия, титриметрия) уже не могли удовлетворять многочисленные запросы химической, фармацевтической, металлургической, полупроводниковой, атомной и других отраслей промышленности, требовавших повышения чувствительности методов до 10-8 – 10-9 %, их селективности и экспрессности, что позволило бы управлять технологическими процессами по данным химического анализа, а также выполнять их в автоматическом режиме и дистанционно.

Ряд современных физико-химических методов анализа позволяют одно­временно в одной и той же пробе выполнять как качественный, так и количественный анализ компонентов. Точность анализа современных физико-химических методов сопоставима с точностью классических методов, а в некоторых, например в кулонометрии, она существенно выше.

К недостаткам некоторых физико-химических методов следует отнести дороговизну используемых приборов, необходимость применения эталонов. Поэтому классические методы анализа по-прежнему не потеряли своего значения и применяются там, где нет ограничений в скорости выполнения анализа и требуется высокая его точность при высоком содержании анализируемого компонента.

Классификация физико-химических методов анализа

В основу классификации физико-химических методов анализа положена природа измеряемого физического параметра анализируемой системы, величина которого является функцией количества вещества. В соответствии с этим все физико-химические методы делятся на три большие группы:

Электрохимические;

Оптические и спектральные;

Хроматографические.

Электрохимические методы анализа основаны на измерении электрических параметров: силы тока, напряжения, равновесных электродных потенциалов, электрической проводимости, количе-ства электричества, величины которых пропорциональны содержанию вещества в анализируемом объекте.

Оптические и спектральные методы анализа основаны на измерении параметров, характеризующих эффекты взаимодействия электромагнитного излучения с веществами: интенсивности излучения возбужденных атомов, поглощения монохроматического излучения, показателя преломления света, угла вращения плоскости поляризованного луча света и др.

Все эти параметры являются функцией концентрации вещества в анали­зируемом объекте.

Хроматографические методы - это методы разделения однородных многокомпонентных смесей на отдельные компоненты сорбционными методами в динамических условиях. В этих условиях компоненты распределяются между двумя несмешивающимися фазами: подвижной и неподвижной. Распределение компонентов основано на различии их коэффициентов распределения между подвижной и неподвижной фазами, что при- водит к различным скоростям переноса этих компонентов из неподвижной в подвижную фазу. После разделения количественное содержание каждого из компонентов может быть определено различными методами анализа: классическими или инструментальными.

Молекулярно-абсорбционный спектральный анализ

Молекулярно-абсорбционный спектральный анализ включает в себя спектрофотометрический и фотоколориметрический виды анализа.

Спектрофотометрический анализ основан на определении спектра поглощения или измерении светопоглощения при строго определенной длине волны, которая соответствует максимуму кривой поглощения исследуемого вещества.

Фотоколориметрический анализ базируется на сравнении интенсивности окрасок исследуемого окрашенного и стандартного окрашенного растворов определенной концентрации.

Молекулы вещества обладают определенной внутренней энергией Е, составными частями которой являются:

Энергия движения электронов Еэл находящихся в электростати-ческом поле атомных ядер;

Энергия колебания ядер атомов друг относительно друга Е кол;

Энергия вращения молекулы Е вр

и математически выражается как сумма всех указанных выше энергий:

При этом, если молекула вещества поглощает излучение, то ее первона­чальная энергия Е 0 повышается на величину энергии поглощенного фотона, то есть:


Из приведенного равенства следует, что чем меньше длина волны λ, тем больше частота колебаний и, следовательно, больше Е, то есть энергия, сообщенная молекуле вещества при взаимодействии с электромагнитным излучением. Поэтому характер взаимодействия лучевой энергии с веществом в зависимости от длины волны света λ будет различен.

Совокупность всех частот (длин волн) электромагнитного излучения называют электромагнитным спектром. Интервал длин волн разбивают на области: ультрафиолетовая (УФ) примерно 10-380 нм, видимая 380-750 нм, инфракрасная (ИК) 750-100000 нм.

Энергии, которую сообщают молекуле вещества излучения УФ- и види­мой части спектра, достаточно, чтобы вызвать изменение электронного состояния молекулы.

Энергия ИК-лучей меньше, поэтому ее оказывается достаточно только для того, чтобы вызвать изменение энергии колебательных и вращательных переходов в молекуле вещества. Таким образом, в различных частях спектра можно получить различную информацию о состоянии, свойствах и строении веществ.

Законы поглощения излучения

В основе спектрофотометрических методов анализа лежат два основных закона. Первый из них - закон Бугера – Ламберта, второй закон - закон Бера. Объединенный закон Бугера - Ламберта – Бера имеет следующую формулировку:

Поглощение монохроматического света окрашенным раствором прямо пропорционально концентрации поглощающего свет вещества и толщине слоя раствора, через который он проходит.

Закон Бугера - Ламберта - Бера является основным законом светопоглощения и лежит в основе большинства фотометрических методов анализа. Математически он выражается уравнением:


или

Величину lg I / I 0 называют оптuческой плотностью поглощающего вещества и обозначают буквами D или А. Тогда закон можно записать так:

Отношение интенсивности потока монохроматического излучения, про­шедшего через испытуемый объект, к интенсивности первоначального потока излучения называется прозрачностью, или пропусканием, раствора и обозначается буквой Т: Т = I / I 0

Это соотношение может быть выражено в процентах. Величина Т, характеризующая пропускание слоя толщиной 1 см, называется коэффициентом пропускания. Оптическая плотность D и пропускание Т связаны между собой соотношением

D и Т являются основными величинами, характеризующими поглощение раствора данного вещества с определенной его концентрацией при определенной длине волны и толщине поглощаю­щего слоя.

Зависимость D(С) имеет прямолинейный характер, а Т(С) или Т(l) - экспоненциальный. Это строго соблюдается только для монохроматических потоков излучений.

Величина коэффициента погашения К зависит от способа выражения концентрации вещества в растворе и толщины поглощающего слоя. Если концентрация выражена в молях на литр, а толщина слоя - в сантиметрах, то он называется молярным коэффициентом погашения, обозначается символом ε и равен оптической плотности раствора с концентрацией 1 моль/л, помещенного в кювету с толщиной слоя 1 см.

Величина молярного коэффициента светопоглощения зависит:

От природы растворенного вещества;

Длины волны монохроматического света;

Температуры;

Природы растворителя.

Причины несоблюдения закона Бyгера - Ламберта - Бера.

1. Закон выведен и справедлив только для монохроматического света, поэтому недостаточная монохроматизация может вызвать отклонение закона и тем в большей степени, чем меньше монохроматизация света.

2. В растворах могут протекать различные процессы, которые изменяют концентрацию поглощающего вещества или его природу: гидролиз, ионизация, гидратация, ассоциация, полимеризация, комплексообразование и др.

3. Светопоглощение растворов существенно зависит от рН раствора. При изменении рН раствора могут изменяться:

Степень ионизации слабого электролита;

Форма существования ионов, что приводит к изменению светопоглощения;

Состав образующихся окрашенных комплексных соединений.

Поэтому закон справедлив для сильно разбавленных растворов, и область его применения ограничена.

Визуальная колориметрия

Интенсивность окраски растворов можно измерять различными методами. Среди них выделяют субъективные (визуальные) методы колориметрии и объективные, то есть фотоколориметрические.

Визуальными называют такие методы, при которых оценку интенсивности окраски испытуемого раствора делают невооруженным глазом. При объективных методах колориметрического определения для измерения интенсивности окраски испытуемого раствора вместо непосредственного наблюдения пользуются фотоэлементами. Определение в этом случае проводят в специальных приборах - фотоколориметрах, поэтому метод получил название фотоколориметрического.

Цвета видимого излучения:

Изучение веществ - достаточно сложное и интересное дело. Ведь в чистом виде они в природе практически никогда не встречаются. Чаще всего это смеси сложного состава, в которых разделение компонентов требует определенных усилий, навыков и оборудования.

После разделения не менее важно правильно определить принадлежность вещества к тому или иному классу, то есть идентифицировать его. Определить температуры кипения и плавления, рассчитать молекулярную массу, проверить на предмет радиоактивности и так далее, в общем, исследовать. Для этого используются разные способы, в том числе и физико-химические методы анализа. Они достаточно разнообразны и требуют применения, как правило, особого оборудования. О них и пойдет речь дальше.

Физико-химические методы анализа: общее понятие

Что собой представляют подобные способы идентификации соединений? Это такие методы, в основу которых положена прямая зависимость всех физических свойств вещества от его структурного химического состава. Так как эти показатели строго индивидуальны для каждого соединения, то физико-химические методы исследования крайне эффективны и дают 100 % результат при определении состава и прочих показателей.

Так, за основу могут быть взяты такие свойства вещества, как:

  • способность к светопоглощению;
  • теплопроводность;
  • электропроводность;
  • температура кипения;
  • плавления и прочие параметры.

Физико-химические методы исследования имеют существенное отличие от чисто химических способов идентификации веществ. В результате их работы не происходит реакция, то есть превращения вещества как обратимого, так и необратимого. Как правило, соединения остаются нетронутыми как по массе, так и по составу.

Особенности данных методов исследования

Существует несколько основных особенностей, характерных для подобных способов определения веществ.

  1. Образец исследования необязательно очищать от примесей перед проведением процедуры, так как оборудование этого не требует.
  2. Физико-химические методы анализа обладают высокой степенью чувствительности, а также повышенной избирательностью. Поэтому для анализа необходимо совсем небольшое количество исследуемого образца, что делает эти способы очень удобными и эффективными. Даже если требуется определить элемент, который содержится в общей сырой массе в ничтожно малых количествах, для обозначенных методов это не является препятствием.
  3. Анализ занимает всего несколько минут, поэтому еще одна особенность - это кратковременность, или экспрессность.
  4. Рассматриваемые методы исследования не требуют применения дорогостоящих индикаторов.

Очевидно, что преимуществ и особенностей достаточно, чтобы сделать физико-химические способы исследования универсальными и востребованными практически во всех исследованиях независимо от области деятельности.

Классификация

Можно выделить несколько признаков, на основе которых классифицируются рассматриваемые методы. Однако мы приведем самую общую систему, объединяющую и охватывающую все основные способы исследования, относящиеся непосредственно к физико-химическим.

1. Электрохимические методы исследования. Подразделяются на основе измеряемого параметра на:

  • потенциометрию;
  • вольтамперометрию;
  • полярографию;
  • осциллометрию;
  • кондуктометрию;
  • электрогравиметрию;
  • кулонометрию;
  • амперометрию;
  • диэлкометрию;
  • высокочастотную кондуктометрию.

2. Спектральные. Включают в себя:

  • оптические;
  • рентгеновскую фотоэлектронную спектроскопию;
  • электромагнитный и ядерномагнитный резонанс.

3. Тепловые. Подразделяются на:

  • термические;
  • термогравиметрию;
  • калориметрию;
  • энтальпиметрию;
  • делатометрию.

4. Хроматографические методы, которые бывают:

  • газовые;
  • осадочные;
  • гельпроникающие;
  • обменные;
  • жидкостные.

Также можно разделить физико-химические методы анализа на две большие группы. Первая - это те, в результате проведения которых происходит деструкция, то есть полное или частичное разрушение вещества или элемента. Вторая - недеструктивные, сохраняющие целостность исследуемого образца.

Практическое применение подобных методов

Области использования рассматриваемых способов работы достаточно разнообразны, но все они, конечно, так или иначе, касаются науки или техники. В целом можно привести несколько основных примеров, из которых станет понятно, для чего именно нужны подобные методы.

  1. Контроль над протеканием сложных технологических процессов на производстве. В этих случаях оборудование необходимо для бесконтактного управления и отслеживания всех структурных звеньев рабочей цепочки. Эти же приборы зафиксируют неполадки и неисправности и дадут точный количественный и качественный отчет о мерах устранения и предупреждения.
  2. Проведение химических практических работ с целью качественного и количественного определения выхода продукта реакции.
  3. Исследование образца вещества с целью установления его точного элементного состава.
  4. Определение количества и качества примесей в общей массе образца.
  5. Точный анализ промежуточных, основных и побочных участников реакции.
  6. Подробный отчет о строении вещества и проявляемых им свойствах.
  7. Открытие новых элементов и получение данных, характеризующих их свойства.
  8. Практическое подтверждение теоретических данных, полученных эмпирическим путем.
  9. Аналитическая работа с веществами высокой чистоты, применяемыми в различных отраслях техники.
  10. Титрование растворов без применения индикаторов, которое дает более точный результат и имеет совершенно простое управление, благодаря работе аппарата. То есть влияние человеческого фактора сводится к нулю.
  11. Основные физико-химические методы анализа позволяют изучить состав:
  • минералов;
  • полезных ископаемых;
  • силикатов;
  • метеоритов и инородных тел;
  • металлов и неметаллов;
  • сплавов;
  • органических и неорганических веществ;
  • монокристаллов;
  • редких и рассеянных элементов.

Области использования методов

  • атомная энергетика;
  • физика;
  • химия;
  • радиоэлектроника;
  • лазерная техника;
  • космические исследования и прочие.

Классификация физико-химических методов анализа лишь подтверждает, насколько они всеобъемлющи, точны и универсальны для применения в исследованиях.

Электрохимические методы

Основа данных методов - это реакции в водных растворах и на электродах под действием электрического тока, то есть, проще говоря, электролиз. Соответственно, вид энергии, который применяется в данных способах анализа - это поток электронов.

У данных способов есть своя классификация физико-химических методов анализа. К данной группе относятся следующие виды.

  1. Электровесовой анализ. По результатам электролиза с электродов снимается масса веществ, которая затем взвешивается и анализируется. Так получают данные о массе соединений. Одной из разновидностей подобных работ является метод внутреннего электролиза.
  2. Полярография. В основе - измерение силы тока. Именно этот показатель будет прямо пропорционален концентрации искомых ионов в растворе. Амперометрическое титрование растворов - это разновидность рассмотренного полярографического метода.
  3. Кулонометрия основана на законе Фарадея. Измеряется количество затраченного на процесс электричества, от которого затем переходят к расчету ионов в растворе.
  4. Потенциометрия - основана на измерении электродных потенциалов участников процесса.

Все рассмотренные процессы - это физико-химические методы количественного анализа веществ. При помощи электрохимических способов исследования разделяют смеси на составные компоненты, определяют количество меди, свинца, никеля и прочих металлов.

Спектральные

В основе лежат процессы электромагнитного излучения. Также имеется своя классификация используемых способов.

  1. Фотометрия пламени. Для этого исследуемое вещество распыляют в открытое пламя. Многие катионы металлов дают окраску определенного цвета, поэтому таким образом возможна их идентификация. В основном это такие вещества, как: щелочные и щелочноземельные металлы, медь, галлий, таллий, индий, марганец, свинец и даже фосфор.
  2. Абсорбционная спектроскопия. Включает в себя два вида: спектрофотометрию и колориметрию. Основа - определение спектра, поглощаемого веществом. Действует как в видимой, так и в горячей (инфракрасной) части излучения.
  3. Турбидиметрия.
  4. Нефелометрия.
  5. Люминесцентный анализ.
  6. Рефрактометрия и полярометрия.

Очевидно, что все рассмотренные методы в этой группе - это способы качественного анализа вещества.

Эмисионный анализ

При этом вызывается испускание или поглощения электромагнитных волн. По этому показателю можно судить о качественном составе вещества, то есть о том, какие конкретно элементы входят в состав образца исследования.

Хроматографические

Физико-химические исследования зачастую проводятся в разных средах. В этом случае очень удобными и эффективными методами становятся хроматографические. Они подразделяются на следующие виды.

  1. Адсорбционная жидкостная. В основе различная способность компонентов к адсорбции.
  2. Газовая хроматография. Также основана на адсорбционной способности, только для газов и веществ в парообразном состоянии. Используется на массовых производствах соединений в подобных агрегатных состояниях, когда продукт выходит в смеси, которую следует разделить.
  3. Распределительная хроматография.
  4. Окислительно-восстановительная.
  5. Ионообменная.
  6. Бумажная.
  7. Тонкослойная.
  8. Осадочная.
  9. Адсорбционно-комплексообразовательная.

Тепловые

Физико-химические исследования подразумевают также использование методов, основанных на теплоте образования или распада веществ. Такие способы также имеют собственную классификацию.

  1. Термический анализ.
  2. Термогравиметрия.
  3. Калориметрия.
  4. Энтальпометрия.
  5. Дилатометрия.

Все эти способы позволяют определять количество теплоты, механические свойства, энтальпии веществ. На основании этих показателей происходит количественное определение состава соединений.

Методы аналитической химии

Данный раздел химии имеет свои особенности, ведь главная задача, стоящая перед аналитиками - качественное определение состава вещества, их идентификация и количественный учет. В связи с этим аналитические методы анализа подразделяются на:

  • химические;
  • биологические;
  • физико-химические.

Так как нас интересуют именно последние, то рассмотрим, какие же именно из них используются для определения веществ.

Основные разновидности физико-химических методов в аналитической химии

  1. Спектроскопические - все те же самые, что были рассмотрены выше.
  2. Масс-спектральные - основаны на действии электрического и магнитного поля на свободные радикалы, частицы или ионы. Лаборант физико-химического анализа обеспечивают комбинированное воздействие обозначенных силовых полей, и частицы разделяются на отдельные ионные потоки по соотношению заряда и массы.
  3. Радиоактивные методы.
  4. Электрохимические.
  5. Биохимические.
  6. Термические.

Что позволяют узнать о веществах и молекулах подобные способы обработки? Во-первых, изотопный состав. А также: продукты реакции, содержание тех или иных частиц в особо чистых веществах, массы искомых соединений и прочие полезные для научных сотрудников вещи.

Таким образом, методы аналитической химии - это важные способы получения информации о ионах, частицах, соединениях, веществах и их анализ.

Одна из наиболее важных задач фармацевтической химии - это разработка и совершенствование методов оценки качества лекарственных средств.

Для установления чистоты лекарственных веществ используют различные физические, физико-химические, химические методы анализа или их сочетание.

ГФ предлагает следующие методы контроля качества ЛС.

Физические и физико-химические методы. К ним относятся: определение температур плавления и затвердевания, а также температурных пределов перегонки; определение плотности, показателей преломления (рефрактометрия), оптического вращения (поляриметрия); спектрофотометрия - ультрафиолетовая, инфракрасная; фотоколориметрия, эмиссионная и атомно-абсорбционная спектрометрия, флуориметрия, спектроскопия ядерного магнитного резонанса, масс-спектрометрия; хроматография - адсорбционная, распределительная, ионообменная, газовая, высокоэффективная жидкостная; электрофорез (фронтальный, зональный, капиллярный); электрометрические методы (потенциометрическое определение pH, потенциометрическое титрование, амперометрическое титрование, вольтамперометрия).

Кроме того, возможно применение методов, альтернативных фармакопейным, которые иногда имеют более совершенные аналитические характеристики (скорость, точность анализа, автоматизация). В некоторых случаях фармацевтическое предприятие приобретает прибор, в основе использования которого лежит метод, еще не включенный в Фармакопею (например, метод рама- новской спектроскопии - оптический дихроизм). Иногда целесообразно при определении подлинности или испытании на чистоту заменить хроматографическую методику на спектрофотометрическую. Фармакопейный метод определения примесей тяжелых металлов осаждением их в виде сульфидов или тио- ацетамидов обладает рядом недостатков. Для определения примесей тяжелых металлов многие производители внедряют такие физико-химические методы анализа, как атомно-абсорбционная спектрометрия и атомно-эмиссионная спектрометрия с индуктивно связанной плазмой.

Важной физической константой, характеризующей подлинность и степень чистоты ЛС, является температура плавления. Чистое вещество имеет четкую температуру плавления, которая изменяется в присутствии примесей. Для лекарственных веществ, содержащих некоторое количество допустимых примесей, ГФ регламентирует интервал температуры плавления в пределах 2 °С. Но в соответствии с законом Рауля (АТ = iK3C, где АТ - понижение температуры кристаллизации; К3 - криоскопическая постоянная; С - концентрация) при і = 1 (неэлектролит) значение А Г не может быть одинаковым для всех веществ. Это связано не только с содержанием примесей, но и с природой самого ЛВ, т. е. с величиной криоскопической постоянной К3, отражающей молярное понижение температуры плавления ЛВ. Таким образом, при одинаковом АТ = = 2 °С для камфоры (К3 = 40) и фенола (К3 = 7,3) массовые доли примесей не равны и составляют соответственно 0,76 и 2,5 %.

Для веществ, которые плавятся с разложением, обычно указывается температура, при которой вещество разлагается и происходит резкое изменение его вида.

В некоторых частных статьях ГФ X рекомендуется определять температуру затвердевания или температуру кипения (по ГФ XI - «температурные пределы перегонки») для ряда жидких ЛС. Температура кипения должна укладываться в интервал, приведенный в частной статье.

Более широкий интервал свидетельствует о присутствии примесей.

Во многих частных статьях ГФ X приведены допустимые значения плотности, реже вязкости, подтверждающие подлинность и доброкачественность ЛС.

Практически все частные статьи ГФ X нормируют такой показатель качества ЛС, как растворимость в различных растворителях. Присутствие примесей в ЛВ может повлиять на его растворимость, снижая или повышая ее в зависимости от природы примеси.

Критериями чистоты являются также цвет ЛВ и/или прозрачность жидких лекарственных форм.

Определенным критерием чистоты ЛС могут служить такие физические константы, как показатель преломления луча света в растворе испытуемого вещества (рефрактометрия) и удельное вращение, обусловленное способностью ряда веществ или их растворов вращать плоскость поляризации при прохождении через них плоскополяризованного света (поляриметрия). Методы определения этих констант относятся к оптическим методам анализа и применяются также для установления подлинности и количественного анализа ЛС и их лекарственных форм.

Важным критерием доброкачественности целого ряда ЛС является содержание в них воды. Изменение этого показателя (особенно при хранении) может изменить концентрацию действующего вещества, а, следовательно, и фармакологическую активность и сделать ЛС не пригодным к применению.

Химические методы. К ним относятся: качественные реакции на подлинность, растворимость, определение летучих веществ и воды, определение содержания азота в органических соединениях, титриметрические методы (кислотно-основное титрование, титрование в неводных растворителях, комплек- сонометрия), нитритометрия, кислотное число, число омыления, эфирное число, йодное число и др.

Биологические методы. Биологические методы контроля качества ЛС весьма разнообразны. Среди них испытания на токсичность, стерильность, микробиологическую чистоту.

Для проведения физико-химического анализа полупродуктов, субстанций лекарственных средств и готовых лекарственных форм при проверке их качества на соответствие требованиям ФС контрольно-аналитическая лаборатория должна быть оснащена следующим минимальным набором оборудования и приборов:

ИК-спектрофотометр (для определения подлинности);

спектрофотометр для спектрометрии в видимой и УФ-области (определение подлинности, количественное определение, однородность дозирования, растворимость);

оборудование для тонкослойной хроматографии (ТСХ) (определение подлинности, родственных примесей);

хроматограф для высокоэффективной жидкостной хроматографии (ВЭЖХ) (определение подлинности, количественное определение, определение родственных примесей, однородности дозирования, растворимости);

газожидкостной хроматограф (ГЖХ) (содержание примесей, определение однородности дозирования);

поляриметр (определение подлинности, количественное определение);

потенциометр (измерение pH, количественное определение);

атомно-абсорбционный спектрофотометр (элементный анализ тяжелых металлов и неметаллов);

титратор К. Фишера (определение содержания воды);

дериватограф (определение потери массы при высушивании).



Загрузка...