caspian72.ru

Микроскопы виды. Лучшие электронные микроскопы для школьников и студентов

Световые микроскопы

Наиболее универсальными и потому наиболее распространенными являются биологические микроскопы. Современный биологический микроскоп имеет несколько сменных объективов и окуляров, а также фотоокуляры и проекционные окуляры, предназначенные для фотографирования изображения или его проецирования на экран. В таких микроскопах предоставляется возможность применять различные методы наблюдения (светлое поле, темное поле, метод фазового контраста).

Кроме микроскопов для биологических исследований, выпускаются и различные специализированные микроскопы.

Микроскопы сравнения обеспечивают визуальное сопоставление двух препаратов. Изображение каждого занимает половину поля зрения микроскопа, что позволяет проводить сравнительное изучение объектов.

Контактные микроскопы дают возможность проводить исследования микроскопических структур отдельных участков тканей, прижимая объектив к объекту исследования.

Стереомикроскопы обеспечивают исследование объекта под разными углами зрения. При этом создается стереоскопический эффект, и наблюдаемое изображение воспринимается объемно.

Ультрафиолетовый и инфракрасный микроскопы предназначены для исследования объектов в ультрафиолетовом или инфракрасном участке светового спектра. Они снабжены флуоресцентным экраном, на котором формируется изображение исследуемого препарата, фотокамерой с чувствительным к этим излучениям фотоматериалом или электронно-оптическим преобразователем.

Поляризационный микроскоп позволяет выявлять неоднородности (анизотропию) структуры при изучении строения тканей и образований в организме в поляризованном свете. Поляризационный микроскоп широко используют в медико-биологических исследованиях при изучении препаратов крови, шлифов зубов, костей и т.п.

Интерференционный микроскоп дает возможность исследовать объекты с низкими показателями преломления света и чрезвычайно малой толщины. В отличие от фазово-контрастного устройства, в интерференционном микроскопе луч света, входящий в микроскоп, раздваивается. Часть проходит через исследуемый объект, а другая - мимо. В окулярной части оба луча соединяются и интерферируют, что позволяет увидеть исследуемую структуру.

Принцип действия люминесцентного микроскопа основан на использовании люминесценции биологических объектов, возникающей под действием ультрафиолетового излучения. Наблюдая или фотографируя препараты в отраженном свете, можно судить о структуре исследуемого образца, что используется в микробиологии и в иммунологических исследованиях. Прямое окрашивание люминесцентными красителями позволяет выявлять такие структуры клеток, которые трудно рассмотреть в световом микроскопе.

Операционный микроскоп используется для проведения микрохирургических операций в офтальмологии, нейрохирургии и других областях микрохирургии. Микроскоп имеет волоконнооптическую систему освещения операционного поля, демонстрационное визуальное устройство, фотоприставку; возможно подключение к нему киноаппаратуры для съемки операции и телевизионного наблюдения.


Электронные микроскопы

Электронный микроскоп построен на таком же принципе получения изображения, как и оптический, но вместо видимого света в нем используется пучок электронов.

Роль линз в электронном микроскопе играет совокупность электрических и магнитных полей. Поскольку электронные пучки не воспринимаются непосредственно глазом, в электронном микроскопе изображение либо фотографируется, либо проецируется на экран. Еще одно принципиальное отличие электронного микроскопа от оптического заключается в том, что в электронном микроскопе контраст создается за счет разного рассеяния электронов от соседних участков.

Однако, хотя предел разрешения электронного микроскопа несравнимо меньше, чем оптического, у электронного микроскопа есть свои недостатки, в частности, невозможность изучения живых биологических объектов, которые под воздействием пучка электронов мгновенно сгорят.


Сканирующие микроскопы

Сканирующие микроскопы основаны на другом принципе получения изображения, который позволяет преодолеть дифракционный предел разрешения. Принцип действия таких микроскопов основан на сканировании объекта сверхмалым зондом. Прошедший или отраженный сигнал регистрируется и используется для формирования трехмерной топографии поверхности образца с помощью ЭВМ.

Сканирующие микроскопы в зависимости от принципа взаимодействия зонда и образца разделяют на электронные, атомно-силовые и ближнепольные.

Наиболее интересен ближнепольный растровый сканирующий микроскоп (БРОМ), который работает в видимом излучении. Среди возможных механизмов формирования контраста в БРОМ можно отметить поглощение, поляризацию, отражение, люминесценцию и другие. Эти возможности отсутствуют в электронной и атомно-силовой микроскопии. Кроме того, световой микроскоп является сравнительно дешевым и неразрушающим инструментом исследования и позволяет работать с биологическими и медицинскими препаратами в естественных условиях.

Принцип действия ближнепольного растрового микроскопа заключается в сканировании объекта оптическим зондом на расстоянии меньше длины волны от объекта (в ближнем поле). Роль светового зонда в этом микроскопе выполняют светоизлучающие острия с выходными отверстиями, радиус которых в 10-20 раз меньше длины волны света.В результате ближнепольный растровый сканирующий микроскоп обеспечивает получение изображения с разрешением в десятки раз выше, чем в обычном микроскопе.

Со времен появления микроскопии как совокупности практического использования микроскопов, появилось множество видов и подвидов, применяемых в той или иной научной области. Иногда во всем многобразии неподготовленному новичку бывает достаточно трудно сориентироваться. Как правило, та или иная организация (например, НИИ, лаборатория или медпункт) приобретает микроскоп под конкретные задачи. И специалисты нашей компании подбирают оптимальную модель исходя их требуемых технических характеристик и специфики исследований. Но если вы решили порадовать своего ребенка или себя любимого путешествиями по микромиру, то, прочитав эту статью изобилие приборов уже не будет вас пугать. В современном мире все микроскопы можно разделить на три больших класса:

  • Учебные микроскопы. Их называют еще школьные или детские . Эти микроскопы являются простейшими биологическими приборами, основная задача которых - показать ребенку или новичку основные методы исследования объектов, впервые познакомить человека с прибором.
  • Цифровые микроскопы . Это очень емкий класс микроскопов, включающий в себя множество подвидов. Основная задача цифрового микроскопа- не просто показать объект в увеличенном виде, но и сделать фотографию или снять видеоролик.
  • Лабораторные микроскопы . Главной задачей лабораторного микроскопа являются проведение конкретных исследований в различных областях науки, промышленности, медицине.

Эти три класса микроскопов плотно переплетены между собой. К примеру, оснастив учебный микроскоп цифровым фото-видео окуляром, мы получим цифровой микроскоп, способный вывести на компьютер с помощью кабеля USB изображение среза листика или насекомого. Кроме того, учебный микроскоп может применяться и для простейших лабораторных биологических исследований. В то же время, лабораторные микроскопы, обладающие большим увеличением, оснащенные цифровой камерой, так же могут превратиться в цифровой.

Но это только на первый взгляд все кажется таким запутанным. На самом деле все проще простого. Остановимся подробнее на каждом из трех классов микроскопов.

Учебные микроскопы условно можно разделить на три подвида

  • Микроскоп - игрушка . Такие микроскопы делаются в Китае на заводах, занимающихся производством товаров для маленьких детей. До сих пор ведутся споры- можно ли назвать пластиковый микроскоп с пластиковой оптикой полноценным оптическим прибором. Отличительная особенность таких микроскопов- яркие упаковки, в которых находится множество пластиковых аксессуаров и сам микроскоп оформлен ярко. Как правило, стоят такие микроскопы очень дешево. Но и познакомить ребенка с микромиром они могут на самом примитивном уровне.
  • Микроскопы с нижней подсветкой зеркалом , стеклянной оптикой и металлическим корпусом. Это простейший учебный микроскоп начального уровня. Им до сих пор комплектуются классы биологии некоторых государственных учебных заведений. Корпус микроскопа металлический, оптика стеклянная. Не смотря на сложность, возникающую при попытках поймать свет зеркальцем и направить его в объектив, качество изображения в таких микроскопах очень приличное. Микроскопы с подсветкой зеркалом стоят на уровне дешевых микроскопов-игрушек, но тем не менее отличаются своим качеством и долговечностью.
  • Микроскопы со светодиодными подсветками , стеклянной оптикой и металлическим корпусом. Эти микроскопы являются современными учебными микроскопами, которые могут в полной мере познакомить ребенка с микромиром. Они обладают высоким увеличением, двумя встроенными подсветками, что позволяет смотреть на объект не только в проходящем, но и в отраженном свете (например, на монетки). Микроскопы могут питаться от сети переменного тока или батареек. И являются лучшими представителями в своем классе. Современные школы и лицеи комплектуются именно такими учебными микроскопами- с металлическим корпусом, двумя подсветками, возможностью подключения фото-видео камерами.

Цифровые микроскопы можно так же разделить на три подвида

  • Биологический микроскоп , оснащенный видеоокуляром. В эти микроскопы при снятом видео-окуляре можно наблюдать глазами как в обычный биологический.
  • Биологический микроскоп, оснащенный дисплеем . Данные микроскопы выводят изображение на дисплей, который крепится к окулярной трубке. При снятом дисплее микроскоп становится обычным биологическим. Дисплей оснащен собственной памятью и разъемами для вывода изображения на ЖК-панель, телевизор или компьютер.

Все существующее разумно, все разумное существует.

Всего 400 лет назад человечество получило два мощных инструмента познания окружающего мира – телескоп и микроскоп. Благодаря первому, люди стали открывать для себя космос, а благодаря второму - стали познавать себя.Мы приглашаем Вас, обратить внимание на микроскоп. Скромный труженик науки дал возможность совершить многочисленные открытия в медицине, биологии, технике, которые в свою очередь совершили прорыв в сознании человечества.

Оказывается, мы живем на границе двух миров – бескрайнего космоса и загадочного микромира со своими законами, на изучение которых уйдут усилия многих поколений ученых. У каждого из нас сейчас есть возможность расширять свой кругозор, получать неповторимые впечатления (даже эстетическое наслаждение) лишь заглянув в окуляр микроскопа. Очень надеемся, что эта статья положит начало вашему новому креативному увлечению.

Из истории появления микроскопической техники

Каждому образованному человеку известно, что невооруженным глазом можно видеть мелкие детали предметов, отстоящие друг от друга не менее чем на 0. 08 мм и только при наличии отличного зрения у наблюдателя.

То, что человеку необходимо приблизить как можно ближе к себе линию горизонта или проникнуть взглядом вглубь предметов, хорошо понимали со времен Великих пирамид и Древних греков. Однако первые успехи на этом поприще отмечаются у голландца Ханса Енсена в 1590 году – это можно считать отправной точкой начала развития микроскопической техники. В чреде изобретателей микроскопа числится великий Галилео Галилей (1609 год), и десятью годами позже Галилея отмечен Корнелиус Дреббель.

Для любителей истории техники и науки этот список энтузиастов и рационализаторов можно продолжать довольно долго. Однако, особую роль в дальнейшей судьбе микроскопа сыграли две выдающиеся персоны - Антон Ван Левенгук (1632-1723) - считается первым, кто сумел привлечь к микроскопу внимание биологов (очень интенсивно развивавшейся в то время области науки) и Э. Аббе, который в фундаментальных сочинениях со своими учениками создал теорию микроскопа и вообще оптических приборов. Была выработана система измерений, определяющих качество микроскопа. Фирма Цейс в Германии становится лидером в области массового производства сложной и качественной оптической техники ко второй половине 19 века.

Понадобилось практически три столетия, чтобы микроскоп приобрел не только современный дизайн, но и совершенную оптическую схему. Не хватит воображения, чтобы представить себе, что дала человечеству микроскопическая техника, появившаяся благодаря усилиям поколений выдающихся ученых и инженеров.

Доступно об устройстве микроскопа

История любого изобретения это как аперитив к основному блюду – разогрев аппетита для пробуждения желания его скорее попробовать. Следующим блюдом будут подробности устройства микроскопа.

Бросив взгляд на иллюстрацию, может показаться, что все довольно просто. Оптическая система микроскопа состоит из двух основных элементов - объектива и окуляра. Они закреплены в подвижном тубусе, расположенном на массивном металлическом основании, к которому крепится предметный столик. Если необходимо «на глаз» прикинуть значение увеличения оптического микроскопа без дополнительных линз между объективом и окуляром, то оно будет равно произведению значения увеличения окуляра на значение увеличения объектива. Например: 50 Х10 = 500 раз.

В современном микроскопе всегда имеется в комплекте осветительная система с источником искусственного света или зеркалом для отражения потока естественного освещения, который концентрируется и усиливается специальным устройством - конденсором с ирисовой диафрагмой для регуляции интенсивности светового потока. Макро- и микро- винты фокусировочного механизма предназначены для «грубой» или «тонкой» настройки резкости. Есть в наличии система управления положением конденсора, позволяющая изменять характеристики светового потока, направляемого к исследуемому препарату.

В зависимости от назначения, в специализированных микроскопах могут быть использованы дополнительные устройства и системы: тринокулярная насадка, фотоадаптер и т.п.. Но об этом чуть позже.

Какие же бывают микроскопы?

Чтобы разобраться в разнообразии микроскопов и их предназначений, необходимы некие ориентиры. Эту роль выполнит классификация. Она позволит Вам, покупатель, найти оптимальный маршрут к необходимому товару.

Детские микроскопы

Микроскоп для юного исследователя – уникальная возможность для расширения своего кругозора, познавая чудеса микромира. Очень необычно выглядят окружающие нас вещи в большом приближении. Совсем по-другому будет выполнена домашняя лабораторная работа не по картинкам учебника биологии, а при помощи микроскопа. Детские микроскопы очень легки и компактны, часто комплектуются камерой-проектором и в целом являются аналогом лабораторного микроскопа. Для взрослого человека микроскоп - отличное занятие для отдыха. Отвлекает на все 100%.

Карманные микроскопы

Незаменимое устройство для людей увлеченных коллекционированием монет, марок, насекомых. Если Ваша работа связана с созданием или ремонтом ювелирных изделий, или микроэлектроники, то подобный микроскоп будет надежным помощником, ведь так часто приходится проверять подлинность нового экземпляра коллекции при покупке или контролировать качество пайки. Эти микроскопы отличаются компактностью. Питание обеспечивается от батарейки. По принципу работы они относятся к цифровым микроскопам. Обеспечивают увеличение до 100 крат. Может оказаться отличным подарком для ребёнка.

Микроскопы для пайки

При ремонте электронной техники очень часто приходится работать с очень мелкими элементами, а также в узлах, требующих сверхточной пайки. Вам просто необходим микроскоп. Микроскопы для пайки комплектуются стереоскопической насадкой дающей объёмное изображение, обладают большим расстоянием между объективом и предметным столиком, что позволяет наблюдать габаритные объекты (как бы «скользить» по их поверхности). Эти приборы великолепно подходят для создания и ремонта ювелирных изделий.

Стереоскопический микроскоп для пайки Bresser Biolux ICD Stereo

Геологические микроскопы

Данная группа микроскопов предназначена для исследования срезов геологических пород, используются для исследования поверхностей ровных, неровных, прозрачных и непрозрачных минеральных образцов, но также можно исследовать и обычные биологические препараты. Отличительной особенностью микроскопа является круглый, подвижной, вращающийся на 360 градусов, предметный столик, грубая и тонкая фокусировка, наличие координатного нониуса и поляризующего светофильтра.

Металлографические микроскопы

Эти микроскопы предназначены для исследования структуры металлов и сплавов. С их помощью можно анализировать толщину и качество напыления. Главная их конструктивная особенность - возможность перемещения микроскопа относительно наблюдаемого предмета (по аналогии с геологическими микроскопами), из-за крупных габаритов последнего. Металлографическими микроскопы, работают в отраженном свете (прямом или инвертированном) и укомплектованы окулярами с плоским полем изображения, так как в основном проводится наблюдение плоских объектов, дают увеличение до 2000 крат и работают без иммерсии.

Металлографический микроскоп Delta Optical NTX-L 5x-20x

Школьные микроскопы

Школьные микроскопы являются практически полным повторением лабораторного микроскопа, весьма просты в обращении. Предназначены для изучения гистологических препаратов и морфологических исследований в отражённом либо проходящем свете методом светлого поля. Часто комплектуются набором манипуляционных инструментов, камерой-проектором и набором препаратов. С таким микроскопом ребёнок 7-ми лет сможет самостоятельно разобраться. Отличный вариант для семейного досуга.

Микроскопы для фото

Этот раздел особенно интересен для любителей микрофотографии. Микроскопы для фото оборудованы тринокулярной насадкой, благодаря чему можно подключить РС - микроокуляр или фотоаппарат и параллельно проводить наблюдения, через вторую дополнительную бинокулярную насадку. Микроскоп работает как в проходящем, так и отраженном свете методом светлого поля, комплектуется координатным нониусом, оснащается грубой и тонкой фокусировкой. Будет отличным приобретением для любой исследовательской лаборатории либо бюро.



Цифровые микроскопы

В цифровых микроскопах изображение формируется при помощи оптоэлектронного преобразователя, где специальная матрица превращает световой поток в электрический сигнал и передаёт его на монитор компьютера или мультимедийный проектор. Некоторые модели микроскопов комплектуются LCD мониторами. Область применения таких микроскопов очень широка; они подходят как для домашних наблюдений, исследований гистологических препаратов, так и для ремонта ювелирных изделий, часов, мобильных телефонов и компьютеров. Создают дополнительный комфорт в работе с микрообъектами. Такой микроскоп будет отличным подарком любому коллекционеру марок или монет.

Микроскопы VIP класса

Это «мерседесы» микроскопической техники. Данные микроскопы являются универсальными приборами, подходящими практически для любых исследовательских задач. Обладают превосходными техническими и оптическими характеристиками. Прилагается дополнительная комплектация в виде инструментов для препарирования, предметных и покровных стёкол, кейса, заготовленных микропрепаратов, набора окаменелостей и много другого. Подобный микроскоп будет отличным подарком любому исследователю, специалисту, любителю.

Микроскопы для исследований

Отличительной особенностью исследовательского микроскопа является наличие в комплекте координатного нониуса, микрометрического и иммерсионного окуляра, благодаря чему можно проводить точные замеры наблюдаемых образцов. Микроскоп работает в проходящем или отраженном свете, оснащен грубой и тонкой фокусировкой, даёт сильное увеличение до 1600 крат. Исследовательские микроскопы часто дополняются тринокулярными насадками, дающими возможность подключения камеры или фотоаппарата к микроскопу.

Микроскоп для исследований Konus Infinity-2

Аксессуары к микроскопам

Приобретая микроскоп, всегда стоит также задуматься о аксессуарах к Вашему микроскопу. Если Вашей основной задачей является преподавательская деятельность в школе или ВУЗе, тогда Вам будет необходима цифровая камера ScopeTek eTrec 2,0MPix и полученные с её помощью изображения можно выводить на мультимедийный проектор или экран.

Вы желаете получать лучшее качество пайки при помощи микроскопа, тогда Вам пригодится дополнительный источник освещения, это может быть модуль подсветки такой как Delta Optical Evolution 200/300 или кольцевой осветитель Delta Optical LED64

Возможно, Ваш ребёнок делает успехи в изучении биологии. Подарив ему микроскоп, позаботьтесь о том, что же он будет наблюдать. Для таких ситуаций существуют целые наборы препаратов от 15 до 100 штук. Однозначно, юному биологу захочется приготовить образцы самостоятельно, тогда ему понадобятся чистые покровные и предметные стёкла.

Собираетесь проводить серьёзные исследования на больших увеличениях от 1000 до 1600 крат, тогда помните, что Вам обязательно понадобится иммерсионное масло!

И многое другое.

Что и как мы сможем увидеть в микроскоп?

Наверно нет ничего более увлекательного, чем микромир, ведь так здорово посмотреть на привычные для нас вещи и окружающие предметы при большом увеличении. Мы получаем возможность увидеть те микроорганизмы,о существовании которых мы и не догадывались, а тем более не подозревали, что они живут на нас. Чего только стоит рассмотреть под микроскопом грязь из-под ногтей или немытую кожуру фруктов.

Став счастливым обладателем микроскопа Вы сможете наблюдать разнообразные бактерии, споры и грибы, актиномицеты, риккетсии, вирусы (на микроскопах с увеличением выше 1400 крат), а также некоторые водоросли и многое другое.

Перед Вами откроется мир фантастических форм и ландшафтов, если заняться технической или геологической микрофотографией.

Помимо неповторимых образов, которые Вы сфотографируете или увидите, появятся знания в тех областях науки и техники, о которых в обычной жизни мы и не подозреваем. А единомышленников и ценителей микрофотографии в Инете Вы сейчас найдете не напрягаясь. Интеллектуальное сообщество всегда высоко оценивает и поддерживает работы в этом весьма необычном направлении искусства.

Две последние микрофотографии уже из истории научно-технической революции ХХ века. Слева снимок поверхности лунного грунта, доставленного на Землю советской автоматической станцией в 70-х годах. Справа – фотография участка микропроцессора компьютера, сделана в конце 90-х годов. Оба снимка сделаны посредством микроскопа в отраженном свете. Дерзайте. Может Ваши снимки войдут в историю.


Осталось совсем немного – приобрести микроскоп . Для этого посетите наш итернет-магазин. Для тех, кому необходимо более детально разобраться с характеристиками предлагаемых микроскопов, предлагаем прочитать следующую статью – «Как выбрать микроскоп».

Световая микроскопия. В основе световой микроскопии лежат различные свойства света. Световая микроскопия обеспечивает увеличение до 2-3 тысяч раз, цветное и подвижное изображение живого объекта, возможность микрокиносъемки и длительного наблюдения одного и того же объекта, оценку его динамики и химизма. Современные световые микроскопы представляют собой довольно сложные приборы, совершенствующиеся в течение 400 лет с момента создания первого прототипа микроскопа.

Освещение при микроскопии играет весьма существенную роль. Неправильное или недостаточное освещение не позволит использовать полностью все возможности микроскопа.

Хорошее освещение достигается при установке света по методу Келлера. Для этого устанавливают осветитель на расстоянии 30-40 см от микроскопа и, перемещая патрон с лампочкой или весь осветитель, добиваются четкого изображения нити накала лампы на закрытой полностью диафрагме конденсора так, чтобы это изображение полностью заполняло отверстие конденсора. Закрыв диафрагму осветителя, открывают диафрагму конденсора и, перемещая конденсор, добиваются резкого изображения диафрагмы осветителя в поле зрения микроскопа. Чтобы яркий свет не слепил глаза, предварительно уменьшают с помощью реостата накал нити лампы. И, наконец, с помощью зеркала изображение отверстия диафрагмы устанавливают в центре поля зрения, а диафрагму осветителя открывают так, чтобы было освещено все видимое поле зрения. Раскрывать больше диафрагму не нужно, так как это не усилит освещенности, а лишь уменьшит контрастность за счет рассеянного света.

Виды световой микроскопии:

1) Иммерсионная световая микроскопия. Иммерсионные объективы используются для изучения объектов невидимых или плохо видимых через сухие системы микроскопа.2) Фазовоконтрастная микроскопия предназначена для получения изображений прозрачных и бесцветных объектов, невидимых при наблюдении по методу светлого поля.3) Аноптральная микроскопия – разновидность фазовоконтрастной микроскопии, при которой применяют объективы со специальными пластинками, нанесенными на одну из линз в виде затемненного кольца.4) Метод интерференционного контраста (интерференционная микроскопия) состоит в том, что каждый луч раздваивается, входя в микроскоп. Один из полученных лучей направляется сквозь наблюдаемую частицу, другой - мимо неё по той же или дополнительной оптической ветви микроскопа. В окулярной части микроскопа оба луча вновь соединяются и интерферируют между собой. Один из лучей, проходя через объект, запаздывает по фазе (приобретает разность хода по сравнению со вторым лучом).5) Поляризационная микроскопия – это метод наблюдения в поляризованном свете для микроскопического исследования препаратов, включающих оптически анизотропные элементы (или целиком состоящих из таких элементов).6) Темнопольная микроскопия. При микроскопии по методу темного поля препарат освещается сбоку косыми пучками лучей, не попадающими в объектив. В объектив попадают лишь лучи, которые отклоняются частицами препарата в результате отражения, преломления или дифракции. В силу этого микробные клетки и другие частицы представляются ярко светящимися на черном фоне (картина напоминает мерцающее звездное небо).7) Люминесцентная микроскопия - метод наблюдения под микроскопом люминесцентного свечения микрообъектов при освещении их сине-фиолетовым светом или ультрафиолетовыми лучамиЛюминесцентная микроскопия. Метод основан на способности некоторых веществ светиться под действием коротковолновых лучей света. При этом длина волны излучаемого при люминесценции света всегда будет больше, чем длина волны света, возбуждаемого люминесценцию. Так, если освещать объект синим светом, он будет испускать лучи красного, оранжевого, желтого и зеленого цвета. Препараты для люминесцентной микроскопии окрашивают специальными светящимися люминесцентными красителями – флуохромами (акридиновый оранжевый, изотиоционат флуоресцеина и др.). Лучи света от сильного источника (обычно ртутной лампы сверхвысокого давления) пропускают через сине-фиолетовый светофильтр. Под действием этого коротковолнового излучения окрашенные флуохромом клетки или бактерии начинают светиться красным или зеленым светом. Для того, чтобы синий свет, вызвавший люминесценцию, не мешал наблюдению, над окуляром ставят запирающий желтый светофильтр, задерживающий синие, но пропускающий желтые, красные и зеленые лучи. В результате при наблюдении в люминесцентном микроскопе на темном фоне видны будут клетки или бактерии, светящиеся желтым, зеленым или красным цветом. Например, при окраске акридиновым оранжевым ДНК клетки (ядерное вещество) будет светиться ярко-зеленым цветом. Метод люминесцентной микроскопии позволяет изучать живые нефиксированные бактерии, окрашенные сильно разведенными флуохромами, не причиняющими вреда миробным клеткам. По характеру свечения могут быть дифференцированы отдельные химические вещества, входящие в состав микробной клетки. Темнопольная микроскопия. При микроскопии по методу темного поля препарат освещается сбоку косыми пучками лучей, не попадающими в объектив. В обектив попадают лишь лучи, которые отклоняются частицами препарата в результате отражения, преломления или дифракции. В силу этого микробные клетки и другие частицы представляются ярко светящимися на черном фоне (картина напоминает мерцающее звездное небо).

Для микроскопии в темном поле используют специальный конденсор (параболоид-конденсор или кардиоид-конденсор) и обычные объективы. Так как аппаратура иммерсионного объектива больше, чем апертура конденсора темного поля, внутрь иммерсионного объектива вставляется специальная трубчатая диафрагма, снижающая его апертуру.

Этот метод микроскопии удобен при изучении живых бактерий, спирохет и их подвижности.

Фазово-контрастная микроскопия. Обыкновенные окрашенные препараты поглощают часть проходящего через них света, в результате чего амплитуда световых волн снижается, и частицы препарата выглядят темнее фона. При прохождении света через неокрашенный препарат амплитуда световых волн не меняется, происходит лишь изменение фазы световых волн, прошедших через частицы препарата. Однако человеческий глаз улавливать это изменение фазы света не способен, поэтому неокрашенный препарат при правильной установке освещения в микроскопе будет невидим.

Фазово-контрастное устройство позволяет превратить изменение фазы лучей, прошедших через частицы неокрашенного препарата, в изменения амплитуды, воспринимаемые человеческим глазом, и, таким образом, позволяет сделать неокрашенные препараты отчетливо видимыми.

Приспособление для фазово-контрастной микроскопии включает в себя конденсор с набором кольцевых диафрагм, обеспечивающих освещение препарата полным конусом света, и фазово-контрастные объективы, которые отличаются от обычных тем, что в их главном фокусе располагается полупрозрачная фазовая пластинка в виде кольца, вызывающая сдвиг фазы проходящего через нее света. Установку освещения проводят так, чтобы весь свет, прошедший через кольцевидную диафрагму конденсора, в дальнейшем прошел через расположенное в объективе фазовое кольцо.

При рассмотрении препарата весь свет, прошедший через участки препарата в которых нет каких-либо объектов, пройдет через фазовое кольцо и даст светлое изображение фона. Свет, прошедший через имеющиеся в препарате частицы, например, бактериальные клетки, получит некоторое изменение фазы и, кроме того, разделится на два луча – недифрагированный и дифрагированный. Недифрагированные лучи, пройдя в дальнейшем через кольцевидную фазовую пластинку в объективе, получат дополнительный сдвиг фазы. Дифрагированные лучи пройдут мимо фазовой пластинки, и их фаза не изменится. В плоскости полевой диафрагмы окуляра произойдет интерференция (наложение) дифрагированного и недифрагированного лучей, а так как эти лучи идут в разных фазах, произойдет их взаимное частичное гашение и уменьшение амплитуды. Благодаря этому микробные клетки будут выглядеть темными на светлом фоне.

Существенными недостатками фазово-контрастной микроскопии являются слабая контрастность получаемых изображений и наличие светящихся ореолов вокруг объектов. Фазово-контрастная микроскопия не увеличивает разрешающей способности микроскопа, но помогает выявить детали структуры живых бактерий, стадии их развития, изменения в них под действием различных агентов (антибиотики, химические вещества и т.д.).

Электронная микроскопия. Для изучения структуры клеток на субклеточном и молекулярном уровнях, а также для изучения вирусов используют электронную микроскопию. Ценность электронной микроскопии заключается в ее способности разрешать объекты, не разрешаемые оптическом микроскопом в видимом или ультрафиолетовом свете. Малая длина волны электронов, которая уменьшается в прямой зависимости от подаваемого ускоряющего напряжения, позволяет разрешать, т.е. различать как отдельные объекты, отстоящие друг от друга всего на 2А (0,2 нм или 0,0002 мкм) или даже меньше, в то время как предел разрешения световой оптики лежит вблизи 0,2 мкм (он зависит от длины волны используемого света).

Электронная микроскопия, при которой изображение получают благодаря прохождению (просвечиванию) электронов через образец, называется просвечивающей (трансмиссивной). При сканирующей (растровой), или туннельной электронной микроскопии пучок электронов быстро сканирует поверхность образца, вызывая излучение, которое посредством катодно-лучевой трубки формирует изображение на светящемся экране микроскопа по аналогии с формированием телевизионного изображения.

Принципиальная оптическая схема электронного микроскопа аналогична схеме светового, в котором все оптическое элементы заменены соответствующими электрическими: источник света – источником электронов, стеклянные линзы – линзами электромагнитными. В электронных микроскопах просвечивающего типа различают три системы: электронно-оптическую, вакуумную и электропитания.

Источником электронов является электронная пушка, состоящая из V-образного вольфрамового термокатода, который при нагревании до 2900°С при подаче постоянного напряжения до 100 кВ в результате термоэмиссии испускает свободные электроны, ускоряемые затем электростатическим полем, создаваемым между фокусирующим электродом и анодом. Электронный пучок затем формируется с помощью конденсорных линз и направляется на исследуемый объект. Электроны, проходя сквозь объект, за счет его разной толщины и электроплотности отклоняются под различными углами и попадают в объективную линзу, которая формирует первое увеличение объекта.

После объективной линзы электроны попадают в промежуточную линзу, которая предназначена для плавного изменения увеличения микроскопа и получения дифракции с участков исследуемого образца. Проекционная линза создает конечное увеличенное изображение объекта, которое направляется на флуоресцентный экран. Благодаря взаимодействию быстрых электронов с люминофором экрана на нем возникает видимое изображение объекта. После наведения резкости сразу проводят фотографирование. Увеличение конечного изображения на экране определяется как произведение увеличений, даваемых объективной, промежуточной и проекционной линзами.

Электронномикроскопическому исследованию могут быть подвергнуты как ультратонкие срезы различных тканей, клеток, микроорганизмов, так и целые бактериальные клетки, вирусы, фаги, а также субклеточные культуры, выделяемые при разрушении клеток различными способами.

Виды электронных микроскопов:

1) Просвечивающий электронный микроскоп (ПЭМ) - это установка, в которой изображение от ультратонкого объекта (толщиной порядка 0,1 мкм) формируется в результате взаимодействия пучка электронов с веществом образца с последующим увеличением магнитными линзами (объектив) и регистрацией на флуоресцентном экране. Для регистрации изображения возможно использование сенсоров, например, ПЗС-матрицы. Первый практический просвечивающий электронный микроскоп был построен Альбертом Пребусом и Дж. Хиллиером в университете Торонто (Канада) в 1938 году с использованием концепции, предложенной ранее Максом Кноллом и Эрнстом Руска.

2) Растровый электронный микроскоп (РЭМ, англ. Scanning Electron Microscope, SEM) - прибор, позволяющий получать изображения поверхности образца с большим разрешением (несколько нанометров). Ряд дополнительных методов позволяет получать информацию о химическом составе приповерхностных слоёв;

3) Сканирующий туннельный микроскоп (СТМ, англ. STM - scanning tunneling microscope) - прибор, предназначенный для измерения рельефа проводящих поверхностей с высоким пространственным разрешением. В СТМ острая металлическая игла подводится к образцу на расстояние нескольких ангстрем. При подаче на иглу относительно образца небольшого потенциала возникает туннельный ток. Величина этого тока экспоненциально зависит от расстояния образец-игла. Типичные значения 1-1000 пА при расстояниях около 1 Å.

Современные модели электронных микроскопов устроены так, что сочетают в себе возможности как просвечивающего, так и сканирующего микроскопов, и их легко можно переоборудовать с одного типа на другой.

Просвечивающая электронная микроскопия применяется для изучения ультратонких срезов микробов, тканей, а также строения мелких объектов (вирусов, жгутиков и др.), контрастированных фосфорно-вольфрамовой кислотой, уранилацетатом, напылением металлов в вакууме. Сканирующая электронная микроскопия применяется для изучения поверхности объектов. При просвечивающей электронной микроскопии получают плоскостные изображения объекта, а при сканирующей – удается получить трехмерное объемное изображение. В бактериологии сканирование наиболее эффективно для выявления отростков и других поверхностных структур, для определения формы и топографических отношений как в колониях, так и на поверхности инфицированных тканей.

При сканирующей микроскопии образец фиксируют, высушивают на холоде и напыляют в вакууме золотом или другими тяжелыми металлами. Таким образом получают реплику (отпечаток), повторяющую контуры образца, впоследствии сканируемую.

Недостатки электронного микроскопа:

1) подготовленный к исследованию материал должен быть мертвым, так как в процессе наблюдения он находится в вакууме;

2) трудно быть уверенным, что объект воспроизводит живую клетку во всех ее деталях, поскольку фиксация и окрашивание исследуемого материала могут изменить или повредить ее структуру;

3) дорого стоит и сам электронный микроскоп и его обслуживание;

4) подготовка материала для работы с микроскопом отнимает много времени и требует высокой квалификации персонала;

Среди дошкольников отыскать тех, кого не интересует устройство всего живого на Земле, очень не просто. Ежедневно дети задают десятки сложнейших вопросов своим мамам и папам. Любознательных малышей интересует определенно все: из чего состоят животные и растения, чем жжется крапива, почему одни листочки гладкие, а другие – пушистые, как стрекочет кузнечик, отчего помидор красный, а огурец – зеленый. И именно микроскоп даст возможность найти ответы на многие детские «почему «. Куда интереснее не просто послушать мамин рассказ о каких-то там клетках, а посмотреть на эти клетки собственными глазами. Трудно даже представить, насколько захватывающие картинки можно увидеть в окуляр микроскопа , какие удивительные открытия сделает ваш маленький естествоиспытатель.

Занятия с микроскопом помогут малышу расширить знания об окружающем мире, создадут необходимые условия для познавательной деятельности, экспериментирования, систематического наблюдения за всевозможными живыми и не живыми объектами. У малыша будет развиваться любознательность, интерес к происходящим вокруг него явлениям. Он будет ставить вопросы и самостоятельно искать на них ответы. Маленький исследователь сможет совсем иначе взглянуть на самые простые вещи, увидеть их красоту и уникальность. Все это станет крепкой основой для дальнейшего развития и обучения.

Нужно отметить, что очень важна заинтересованность кого-нибудь из взрослых: мамы, папы, старших брата или сестры. Тогда они смогут передать свою увлеченность малышу. Сам кроха, если, конечно, он не прирожденный биолог, вряд ли будет долго возиться с микроскопом без вашей активной помощи и участия.

Какие бывают микроскопы

Детский микроскоп ничем принципиально не отличается от микроскопа биологического. Это не макет и не игрушка, а действующий оптический прибор. И, часто, такие микроскопы имеют очень приличную оптику и большое увеличение. Давайте рассмотрим типы микроскопов и попробуем определить их основные плюсы и минусы.

Итак, чаще всего в магазине вы встретите так называемый прямой биологический микроскоп (монокулярный, т.е. имеющий один окуляр). С похожим прибором сталкивался любой из нас на уроках школьной биологии. Это классический вариант микроскопа, только оформлен он необычно и весело, чтобы понравиться своему маленькому хозяину (может быть раскрашен в яркие цвета или иметь не совсем обычную форму ). С его помощью можно рассматривать как прозрачные объекты (на предметных стеклах в проходящем свете), так и непрозрачные (в отраженном свете). Важная характеристика любого микроскопа – его увеличение. Обычно микроскопы имеют три сменных объектива. Но увеличивает не только объектив. Окуляр тоже имеет свое собственное увеличение (как правило, 10 или 20 крат). Для того, чтобы посчитать общее увеличение микроскопа, нужно увеличение окуляра (всегда написано на окуляре) умножить на увеличение объектива. Так, если микроскоп имеет окуляр с 20-тикратным увеличением и объективы 4, 10 и 40, при смене объективов получаем увеличения 80, 200 и 800 крат.

Современные световые микроскопы могут создавать увеличение в 1500–3000 крат. Стоит ли покупать прибор с таким увеличением в качестве первого микроскопа ребенку дошкольнику? Вероятно, не стоит. Даже для очень серьезных экспериментов малышу вряд ли понадобится увеличение больше 400–600 крат. Микробов, правда, рассмотреть не удастся. Но, если кто-нибудь из родителей не имеет специального образования, вы, скорее всего, не увидите их и в «крутой» микроскоп. Для приготовления микробного препарата нужно использовать специальные методы окраски мазка, очень мощное освещение и иммерсионные объективы (объектив с большим увеличением погружается в специальное иммерсионное масло, обычно кедровое, для устранения рассеивания света). Но расстраиваться нет причин. И без микробов маленькому биологу с головой хватит объектов для изучения.

Очень хорошим выбором для малыша станет стереомикроскоп (бинокулярный ). Он имеет два расположенных под углом друг к другу окуляра, что создает стереоизображение. И хотя такие микроскопы дают относительно небольшие увеличения (до 100), зато позволяют рассматривать практически любые предметы, которые нас окружают. Это поможет малышу увидеть многие обыденные вещи совсем в ином свете. Для такого микроскопа не нужно мощное освещение. И, кроме всего прочего, бинокулярный микроскоп равномерно нагружает оба глаза, что больше подходит для неокрепшего детского зрения, чем монокуляры. Многие современные микроскопы имеют собственную встроенную подсветку. Обратите на это внимание при выборе прибора. Дополнительный источник света позволяет лучше осветить объект, а, значит, и лучше его рассмотреть.

Есть совсем маленькие, «карманные » микроскопы с небольшим увеличением. Их можно носить с собой на прогулку и рассматривать растения и насекомых прямо на лугу или в лесу.

Если у вас дома есть компьютер, можно обзавестись цифровым микроскопом. Эта дорогая современная игрушка тоже имеет свои достоинства и недостатки. Главное достоинство – возможность вывода изображения на экран монитора. Это превращает микроскоп в подобие увлекательной компьютерной игры. Ребенок может сохранить полученное изображение, отредактировать, раскрасить, подписать при помощи простого графического редактора. А еще можно записывать видеоизображение и даже сделать свой собственный видеофильм о микромире. Микроскоп снимается с подставки, с ним можно пройтись по комнате, поднося к любым предметам и получая на экране их увеличенное изображение. В каком-то смысле такой микроскоп превращается из исследовательского прибора в творческий инструмент. Хорошо ли это? И да, и нет. Если ваш малыш – натура творческая, цифровой микроскоп наверняка придется ему по душе. Если же кроха скорее естествоиспытатель, стремящийся постигнуть тайны мироздания, лучше приобрести для него обычный микроскоп. Вся захватывающая суть микроскопа именно в том, что смотришь в окуляр. Словно заглядываешь одним глазком в неведомый и удивительный мир, другую вселенную…

Оборудуем лабораторию

Для того чтобы занятия с микроскопом не наскучили малышу, организуйте их, как увлекательную игру, добавив известную долю таинственности. Пусть ребенок представит себя настоящим ученым-исследователем. А для этого ему понадобится мини-лаборатория. Выделите малышу полку, где будет стоять микроскоп, храниться образцы и необходимые инструменты для детских исследований. Обычный письменный стол может в считанные минуты превратиться в рабочий уголок. Только непременно позаботьтесь о хорошем освещении. Это снизит неизбежную нагрузку на детские глаза: чем лучше освещен объект, тем легче его разглядеть. Так что лучшее место для микроскопа – возле окна. Да еще прибавьте к этому яркую настольную лампу. Сразу приучайте малыша поддерживать порядок на рабочем месте (в лаборатории всегда должен быть порядок! ), а после занятий все за собой убирать. Дайте ребенку всевозможные баночки и коробочки, в которых он сможет хранить свои объекты для исследования и необходимый инвентарь.

Кроме самого микроскопа , вам понадобятся предметные и покровные стекла, пипетки, пинцет, игла. А также некоторые вещества: дистиллированная вода, спирт, водный раствор йода (для окраски). Объясните малышу правила безопасности и строго требуйте их соблюдения. Все-таки микроскоп (даже детский) – не игрушка, а сложный оптический прибор. И колоть орехи им не стоит. Также не обязательно бездумно крутить все подряд винты. Делать это нужно осознанно и с определенной целью. Сразу расскажите малышу, что и для чего в микроскопе предназначено и научите кроху все называть своими именами, а не «штучками» и «колесиками». Замечено, что даже пятилетние малыши быстро осваиваются с микроскопом: подбирают нужное увеличение и наводят резкость, рассматривая все, что попадается под руку.

Первое время не оставляйте малыша с микроскопом один на один. Рассматривать предметы в отраженном свете при небольшом увеличении ваш маленький микроскопист научится быстро. А вот работы с предметными стеклами лучше ему самому пока не доверять, а делать это вместе. Во-первых, приготовление препарата подразумевает манипулирование острыми предметами (лезвие, игла) и химическими веществами. Во-вторых, предметные стекла – вещь крайне хрупкая. Неумелые пальчики могут их легко раздавить и пораниться. Научите малыша пользоваться пинцетом: отделять кусочки исследуемых объектов, класть их на предметный столик. Это будет развивать аккуратность и точность движений маленького исследователя.

Научная экспедиция

Раз уж малыш превратился в ученого-естествоиспытателя, значит, самое время отправиться в научную экспедицию за всевозможными образцами. Для такой необычной прогулки следует запастись несколькими баночками с крышками и коробочками, куда вы будете складывать свои находки. Очень удобна для этих целей коробка от конфет с пластиковыми ячейками или пластиковый лоток для яиц. Еще вам пригодятся маркер, чтобы подписать коробочки с образцами, пинцет и перочинный нож.

Каждый раз можно организовывать «экспедиции» в разные места. Сегодня поищите образцы во дворе, завтра отправьтесь на луг, послезавтра – к водоему. Дайте малышу возможность самому решить, что он хочет забрать домой для изучения. И, конечно, подскажите ему несколько своих идей.

Что же можно собирать? Абсолютно все! Листья, цветочки, лепестки, колючки растений, семена деревьев и цветов. Всевозможные почвы: чернозем, песок, глина. Очень интересно рассмотреть с малышом состав чернозема (хорошо видны остатки растений и даже живые насекомые ), песчинки (красивые круглые кристаллики) и вязкую глину. Сразу станет понятно, где лучше расти растениям и почему. Соберите несколько видов лишайников. Они изумительно красивы под микроскопом. Интересно рассматривать мох. Часто в нем можно отыскать крошечных насекомых, которые практически не видны невооруженным глазом. Отломите по кусочку коры разных деревьев. Пригодятся перышки птиц. Зачерпните понемногу воды из лужи и заросшего водоема, прихватите немного водорослей и тины. Всю эту добычу рассортируйте и подпишите. Теперь вашему маленькому биологу хватит работы надолго.

Настраиваем микроскоп

В первую очередь необходимо настроить освещение. Для этого поверните зеркальце под предметным столиком таким образом, чтобы свет настольной лампы отражался от него и проходил через отверстие диафрагмы. Наблюдая в окуляр, поворачивайте зеркало до тех пор, пока все поле зрения (т.е. то, что вы видите в окуляр) не будет равномерно освещено. Теперь положите на предметный столик ваш препарат и зафиксируйте его специальными держателями. Установите объектив с самым маленьким увеличением. Глядя в окуляр, при помощи винтов настройки медленно поднимайте или опускайте тубус микроскопа до тех пор, пока в поле зрения не появится изображение препарата. Во время фокусировки можно осторожно подвигать препарат. Так вам будет легче правильно его расположить. Найдя изображение, вращайте винты еще медленнее, чтобы исследуемый объект стал максимально резким. После этого при необходимости установите большее увеличение. Все, можно рассматривать!

Если к микроскопу прилагается встроенный осветитель, то зеркало вам не понадобится. Также нет необходимости его настраивать, если вы собираетесь рассматривать предметы в отраженном свете. В этом случае просто положите объект на предметный столик, который должен быть максимально освещен, и настройте фокус.

Как приготовить препарат

Для того чтобы рассмотреть какой-нибудь объект в проходящем свете, он должен быть очень тонким и прозрачным (иначе лучи света не смогут сквозь него пройти). Покровные стекла тщательно вымойте, сполосните в спирте (чтобы на них не оставалось пятен) и высушите. Если вы собираетесь исследовать какую-нибудь жидкость (например, молоко, сок или воду), просто капните пару капель на предметное стекло и сверху накройте покровным стеклом. Если объект исследования – кусочек растения, то при помощи острого лезвия срежьте с него тонкую, прозрачную пленочку, возьмите ее пинцетом и положите в центр покровного стекла.

Сверху капните одну каплю воды. Капать воду сможет и малыш, а вот работать с лезвием, понятно, придется вам. Если ваш объект прозрачный, его нужно окрасить, добавив одну каплю водного раствора метиленового синего (в народе известен как «синька» ). Теперь накрываем все это покровным стеклом, следя, чтобы под ним не осталось пузырьков воздуха, промакиваем лишнюю жидкость и изучаем под микроскопом .

Такой препарат называется временным. После его изучения стекла моются и используются для последующих опытов. Если же вам хочется сохранить препарат надолго, перед тем как положить покровное стекло, тонкой иглой нанесите по его краю прозрачный клей, аккуратно придавите (стекла очень хрупкие и легко трескаются!) и оставьте сохнуть на сутки. Теперь это уже постоянный препарат, который можно рассматривать много раз. Кстати, к большинству микроскопов прилагаются уже готовые микропрепараты и слайды для рассматривания. Такие наборы можно купить и отдельно.

Что можно посмотреть под микроскопом?

Для рассматривания под микроскопом годится буквально все. Начните с небольшого увеличения. Рассмотрите вместе с малышом листочки собранных растений. Многие из них имеют волоски, которые очень интересно рассматривать в микроскоп. Хорошо видно строение листа, жилки. Посмотрите на лист мать-и-мачехи с одной и с другой стороны. Они совершенно разные: одна сторона опушена, другая – нет. Сначала пусть малыш определит это на ощупь, а потом увидит волоски в микроскоп. На листе крапивы можно рассмотреть те самые жгучие волоски, которые доставляют так много неприятностей голым детским ножкам и ручкам. Сорвите по листочку от каждого комнатного растения. Каждый по-своему интересен и неповторим. Если на подоконнике растут кактусы, пусть ради науки пожертвуют несколькими колючками.

Очень красивы лепестки цветов. Можно рассмотреть пыльцу. Для этого перенесите ее мягкой кисточкой с цветка на предметное стекло. Если малышу будет интересно, попробуйте зарисовать, как выглядит пыльца разных растений. Некоторые микроскопы снабжены специальным проектором, который проецирует изображение на бумагу. Так его легче будет зарисовать. Рассмотрите кожуру и мякоть всевозможных овощей и фруктов. Чем они похожи и чем различаются? Интересно рассматривать волосы и сравнивать их по цвету и толщине. Окажется, что кошачья шерсть тоньше человеческого волоса, а папин волос толще детских. А подсунутый под микроскоп собственный палец может произвести настоящий фурор. Особенно впечатлит грязь под ногтями. Микробов там, конечно, не увидишь. Но и без них выглядит ужасающе. Сразу может поступить требование постричь ногти.

Не менее интересно посмотреть, из чего состоит домашняя пыль, как выглядит бумага, вата, нитки, клочки кукольных волос и меха мягких игрушек, рыбьи чешуйки и кости, икринки, мед, капельки молока, кристаллики соли, сахара, лимонной кислоты, соды, льда, всевозможные семечки и крупы, кусочки грибов, камушки и ракушки, привезенные с моря, шишки, бумажные деньги (на них можно отыскать разные знаки, которые не видны без увеличения ). Если у вас есть аквариум, соскребите немного налета с его стенок, положите на предметное стекло, сверху накройте покровным стеклом и рассмотрите при среднем увеличении. Поверьте, это потрясающая картинка! Из болотной воды, которую малыш набрал в «экспедиции», тоже получается интереснейший микропрепарат. Хоть и не микробы, но живые, двигающиеся существа. Фантастика! Кроме зоопланктона, можно увидеть и одноклеточные водоросли со жгутиками. Иногда в воду может попасть лягушачья икра, крошечные головастики и личинки водяных насекомых. А потом рассмотрите воду из-под крана. Есть ли там что-то живое и почему?

Вырастите с малышом плесень на хлебе. Для этого положите кусочек хлеба в стеклянную банку с крышкой (если есть специальная чашка Петри, то в нее), смочите водой и поставьте на несколько дней в теплое место (но не на солнце ). Немного выросшей плесени положите в капельку воды на предметное стекло, закройте покровным стеклом, и ваш препарат готов. Можно рассмотреть обычные пекарские дрожжи. Для этого отщипните от брикета маленький кусочек и разведите в капельке воды. А еще можно прорастить пшеничное зернышко и ежедневно наблюдать, какие с ним происходят изменения…

Великие и ужасные

Ну а самые прекрасные объекты для детских исследований – это, бесспорно, насекомые. Где брать образцы для рассматривания, решать вам. Но, думаю, не стоит ловить и убивать насекомых специально. Даже ради науки. Не нужно такой подход делать для малыша нормой. Исключения могут составлять насекомые «вредные»: муха, комар, таракан, колорадский жук. Этих «надоед» всегда можно отыскать с избытком. Очень интересно рассматривать под микроскопом (особенно бинокулярным) муху. Обратите внимание малыша на устройство ее глаза, ножек, крыльев. Посмотрите крыло с обеих сторон. Сверху хорошо видно его строение, а снизу вам представится очень красивая картинка: радужные парчовые переливы. У комара обратите внимание на «кусающее» устройство – хоботок.

Поищите на лугу крыло бабочки. Под микроскопом на нем видна пыльца. Обследуйте паутину. Там всегда можно найти погибших мелких насекомых. Просто поразительно, как сложно устроены такие крошечные, неприметные существа. Прочитайте с малышом книгу Я. Ларри «Необыкновенные приключения Карика и Вали «. Наверное, Карик и Валя видели насекомых почти такими же – огромными и ужасающими.

Изучаем Чиполлино

Микроскоп поможет малышу узнать о том, что все живое состоит из клеток. Под микроскопом можно увидеть не только клетку, но и рассмотреть ее строение. Для этого вместе с ребенком приготовьте простой и наглядный препарат из обычного репчатого лука. Почему лук? У этого растения очень крупные клетки, и они отчетливо видны при сравнительно небольшом увеличении. Итак, разрежьте луковицу на несколько частей и отделите один сочный слой. Отрежьте от него небольшой кусочек, а затем с вогнутой стороны кусочка пинцетом отделите тонкую пленочку. На предметное стекло капните дистиллированной воды, положите в нее пленочку и аккуратно расправьте иглой. Затем добавьте пару капель водного раствора метиленового синего или водного раствора йода.

Делать это нужно для того, чтобы бесцветные клетки окрасились и стали лучше заметны. Если удастся отыскать красно-фиолетовую луковицу, краситель можно не добавлять. Полученную «красоту» накройте сверху покровным стеклом и промокните выступившую жидкость. Попробуйте рассмотреть препарат сначала при маленьком, а затем при большом увеличении. Расскажите малышу, что и растения и животные состоят из крошечных клеточек. Вот они-то и видны в микроскоп, будто маленькие кирпичики. А почему их назвали клетками? Это имя придумал английский ботаник Р.Гук. Рассматривая под микроскопом срез пробки, он заметил, что она состоит «из множества коробочек «. А еще он называл эти «коробочки» камерами и… клетками. Ведь, правда, похоже, что кто-то расчертил луковую пленочку на клеточки.

При большом увеличении хорошо видна клеточная стенка, ядро, вакуоль. Объясните малышу, что клеточная стенка – это перегородка, стеночка между клетками. Она защищает клетку и помогает сохранить нужную форму. Благодаря ядру клетка растет и размножается. А внутри вакуоли находится клеточный сок. Тот самый, который брызжет в разные стороны и вызывает слезы, когда мы режем лук.

Красный? Зеленый?

Спросите малыша, почему овощи и фрукты бывают разных цветов. Он попытается ответить на вопрос, выдумывая фантастические версии. Внимательно выслушайте его предположения, а потом предложите выяснить это наверняка. Для опыта вам понадобится несколько предметных стекол, мякоть всевозможных плодов (арбуз, тертая морковь, помидор, красный и зеленый перец, ягоды рябины и др.), зеленые листья растений. Капните на предметное стекло несколько капель воды, поместите туда немного мякоти спелого помидора и расщепите ее иглой. Накройте покровным стеклом и рассмотрите вместе с малышом под микроскопом.

Вы сможете увидеть внутри клеток особые включения красного цвета – пластиды. Именно они придают спелым овощам и фруктам красный, желтый или оранжевый цвет. Зеленые листья и плоды тоже содержат пластиды, но зеленого цвета. А уже знакомый нам лук или картофель белые потому, что их пластиды бесцветны. Поэкспериментируйте с самыми разными овощами и фруктами, чтобы малыш смог в этом убедиться. А затем расскажите ему, что пластиды одного вида могут превращаться в другой. Вот почему зеленый помидор поспевает и становится красным. А что происходит с зелеными листьями осенью, почему они желтеют и краснеют? Думаю, теперь юный биолог и сам сможет найти ответ на этот вопрос. Ну, разве это не замечательно?

Итак, подведем итог. Микроскоп – штука очень увлекательная. Однажды заболев им, маленький человечек может пронести свою любовь к исследованиям через всю жизнь. И какой бы деятельности не посвятили себя ваши подросшие сын или дочка в будущем, эти детские эксперименты непременно сослужат им хорошую службу. Интересных вам наблюдений и удивительных открытий!


Мир развлечений для наших детишек сегодня просто огромен. Родители стараются обеспечить своего малыша только лучшим....

  • В наше время использование микроскопов как в домашних условиях, так и в учебных заведениях довольно...


  • Загрузка...